Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e36925, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281524

RESUMO

This study presents a method for modelling, predicting, and evaluating the impact of drill materials on the drilling process of hybrid palm/jute polyester composites, with the aim of enhancing hole quality regarding delamination, circularity, and cylindricity. Three drill materials, including High-Speed Steel (HSS), 5 % Cobalt-coated High-Speed Steel (HSS-Co5), and Solid Carbide drills were tested, and their impacts on drilling performance were assessed. Through thorough experimentation and statistical analysis, significant differences in results were observed between HSS drills and both HSS-Co5 and Solid Carbide drills. However, the variation in results between HSS-Co5 and Solid Carbide drill results was minimal. Additionally, the findings highlight notable disparities among drill types concerning uncertainty. The results also indicate that feed rate, drill material, and their interaction play crucial roles in determining drilling efficiency. Specifically, HSS drills consistently outperformed HSS-Co5 and Solid carbide drills, demonstrating superior performance in minimizing delamination, improving circularity, and enhancing cylindricity along with lower uncertainty.

2.
Ultrasonics ; 134: 107097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392617

RESUMO

Drilling of high-strength T800 carbon fiber reinforced plastic (CFRP) are widely employed in current aviation industry. Drilling-induced damages frequently occur and affect not only the load carrying capacity of components but also the reliability. As one of effective methods to reduce the drilling-induced damages, advanced tool structures have been widely used. Nevertheless, it is still difficult to realize high machining accuracy and efficiency by this method. This paper compared three different drill bits to evaluate the drilling performance of T800 CFRP composites and the results showed that the dagger drill was a good choice to drill T800 CFRP considering the lowest thrust force and damages. On this basis, ultrasonic vibration was successfully imposed on dagger drill to further improve the drilling performance. The experimental results showed that ultrasonic vibration reduced the thrust force and surface roughness with a maximum decrease of 14.1 % and 62.2 % respectively. Moreover, the maximum hole diameter errors were decreased from 30 µm in CD to 6 µm in UAD. Besides, the mechanisms of force reduction and hole quality improvement by ultrasonic vibration were also revealed. The results suggest that the combination of ultrasonic vibration and dagger drill is a promising strategy for high performance drilling CFRP.

3.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614449

RESUMO

This article shows how different drilling strategies may affect the geometrical and dimensional accuracy of deep through holes. The tests were conducted on a three-axis direct-drive turning center. The holes were drilled in cylindrical PA6 aluminum alloy specimens 30 mm in length and 30 mm in diameter using 6 mm Ø VHM HPC TiAlN-coated twist drill bits. The cutting fluid was supplied to the cutting zone through the spindle. The experiments involved applying three strategies to drill deep through (5D) holes. The first required the workpiece to be fixed and the tool to perform both rotary and reciprocating motions. The second assumed that the workpiece performed the primary (rotary) motion whereas the tool moved in reciprocating motion. In the third strategy, the workpiece and the tool rotated in opposite directions and the tool also performed a reciprocating motion. The straightness, roundness, cylindricity, and diameter errors were the key output parameters in the analysis of the geometrical and dimensional accuracy of holes. The Taguchi orthogonal array design of experiment (DOE) was employed to determine the effects of the input (cutting) parameters (i.e., spindle speed and feed per revolution) and the type of hole making strategy on the hole errors by means of multi-factor statistical analysis ANOVA. The use of the highest spindle speed (n = 4775 rpm), the highest feed per revolution (fn = 0.14 mm/rev) and strategy I resulted in the lowest values of the output parameters (STR = 22.7 µm, RON = 8.6 µm, CYL = 28.2 µm, and DE = 9.9 µm). Strategy I was reported to be the most effective for hole drilling in PA6 aluminum alloy because, irrespective of the values of the process parameters used, three out of four output parameters, i.e., straightness, roundness and diameter errors, reached the lowest values.

4.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501492

RESUMO

Modern aircrafts require the assembly of thousands of components with high accuracy and reliability. The normality of drilled holes is a critical geometrical tolerance that is required to be achieved in order to realize an efficient assembly process. Failure to achieve the required tolerance leads to structures prone to fatigue problems and assembly errors. Elastomer-based tactile sensors have been used to support robots in acquiring useful physical interaction information with the environments. However, current tactile sensors have not yet been developed to support robotic machining in achieving the tight tolerances of aerospace structures. In this paper, a novel elastomer-based tactile sensor was developed for cobot machining. Three commercial silicon-based elastomer materials were characterised using mechanical testing in order to select a material with the best deformability. A Finite element model was developed to simulate the deformation of the tactile sensor upon interacting with surfaces with different normalities. Additive manufacturing was employed to fabricate the tactile sensor mould, which was chemically etched to improve the surface quality. The tactile sensor was obtained by directly casting and curing the optimum elastomer material onto the additively manufactured mould. A machine learning approach was used to train the simulated and experimental data obtained from the sensor. The capability of the developed vision tactile sensor was evaluated using real-world experiments with various inclination angles, and achieved a mean perpendicularity tolerance of 0.34°. The developed sensor opens a new perspective on low-cost precision cobot machining.

5.
Materials (Basel) ; 15(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36013633

RESUMO

This article discusses experimental results concerning the quality of through holes drilled in Inconel 718. The tests involved hole cutting under 27 different conditions using different values of the feed per revolution and spindle speed, and different types of kinematic system. The drilling was performed on a CTX Alpha 500 universal turning center using tools with internal coolant supply. Three kinematic systems were considered for hole cutting. The first, based on the driven tool holder, had a stationary workpiece and a rotating and linearly fed tool. In the second, where drilling was based on the spindle rotations, the workpiece rotated while the tool moved along a straight line. In the third system, the workpiece and the tool rotated in opposite directions; the tool also performed a linear motion. The study aimed to assess the quality of holes on the basis of the following output parameters: the hole diameter, cylindricity and straightness errors, and the surface texture. A multifactorial statistical analysis was used to determine how the hole quality was dependent on the process parameters and the type of drilling kinematics. The findings confirm that the kinematic system, as well as the feed per revolution, are the key factors affecting the quality of holes drilled in Inconel 718. The analysis of the hole drilling process for Inconel 718, performed using a CNC turning center, shows that the third kinematic system was the best option as all the four parameters describing the hole quality had the lowest values. The best results were obtained in the 6th (n = 637 rpm, fn = 0.075 mm/rev, KIN III) and 8th experiments (n = 955 rpm, fn = 0.075 mm/rev, KIN II), because the parameters were then the lowest, with the scatter of results being up to 30%.

6.
Materials (Basel) ; 15(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161060

RESUMO

As a new machining method, ultrasonic-assisted bi-direction helical milling has obvious advantages in making holes on carbon fiber-reinforced plastics (CFRP). However, cutting edges of the flat-bottomed milling cutter are easy to wear, which may cause severe defects such as burrs and tears in the outlet of the hole. In order to improve the hole-making quality of CFRP, the gradual-removal reverse edge milling cutter was proposed and designed. The finite method models of reverse helical milling CFRP with the flat-bottomed reverse edge milling cutter and the gradual-removal reverse edge milling cutter under an ultrasonic vibration were established, and the comparative cutting experiments of the two cutters were carried out. By comparing the cutting performance of the two milling cutters under the condition of ultrasonic vibration assistance, the cutting mechanism of improving the hole wall quality by the gradual-removal reverse edge milling cutter was studied. The results showed that when the reverse cumulative cutting depth reached about 60 mm, compared with the flat-bottomed reverse edge milling cutter, the gradual-removal reverse edge milling cutter transferred part of the cutting task of the peripheral edge to the end edge, and the wear of the reverse peripheral edges which directly affects the hole quality was effectively alleviated. This mechanism made the cutting state of the peripheral edge dominated by shear failure, which led to the significant improvement of the quality at the outlet of the hole.

7.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833294

RESUMO

Carbon-Fibre-Reinforced Polymers (CFRPs) have seen a steady rise in modern industrial applications due to their high strength-to-weight ratio and corrosion resistance. However, their potential is being hindered by delamination which is induced on them during machining operations. This has led to the adoption of new and innovative techniques like cryogenic-assisted machining which could potentially help reduce delamination. This study is aimed at investigating the effect of cryogenic conditions on achieving better hole quality with reduced delamination. In this paper, the numerical analysis of the drilling of CFRP composites is presented. Drilling tests were performed experimentally for validation purposes. The effects of cooling conditions and their subsequent effect on the thrust force and delamination were evaluated using ABAQUS/CAE. The numerical models and experimental results both demonstrated a significant reduction in the delamination factor in CFRP under cryogenic drilling conditions.

8.
Materials (Basel) ; 14(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443089

RESUMO

This article attempts to show how the kinematic system affects the geometrical and dimensional accuracy of through-holes in drilling. The hole cutting tests were performed using a universal turning center. The tool was a TiAlN-coated Ø 6 mm drill bit, while the workpiece was a C45 steel cylinder with a diameter of 30 mm and a length of 30 mm. Three kinematic systems were studied. The first consisted of a fixed workpiece and a rotating and linearly moving tool. In the second, the workpiece rotated, while the tool moved linearly. The third system comprised a rotating workpiece and a rotating and linearly moving tool, but they rotated in opposite directions. The geometrical and dimensional accuracy of the hole was assessed by analyzing the cylindricity, straightness, roundness, and diameter errors. The experiment was designed using the Taguchi orthogonal array method to determine the significance of the effects of the input parameters (cutting speed, feed per revolution, and type of kinematic system) on the accuracy errors. A multifactorial statistical analysis (ANOVA) was employed for this purpose. The study revealed that all the input parameters considered had a substantial influence on the hole quality in drilling.

9.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300965

RESUMO

This article discusses the relationship between the kinematic system used in drilling and the quality of through-holes. The drilling was done on a CTX Alpha 500 universal turning center using a TiAlN-coated 6.0 mm drill bit with internal cooling, mounted in a driven tool holder. The holes were cut in cylindrical 42CrMo4 + QT steel samples measuring 30 mm in diameter and 30 mm in length. Three types of hole-drilling kinematic systems were considered. The first consisted of a fixed workpiece and a tool performing rotary (primary) and linear motions. In the second system, the workpiece rotated (primary motion) while the tool moved linearly. In the third system, the workpiece and the tool rotated in opposite directions; the tool also moved linearly. The analysis was carried out for four output parameters characterizing the hole quality (i.e., cylindricity, straightness, roundness, and diameter errors). The experiment was designed using the Taguchi approach (orthogonal array). ANOVA multi-factor statistical analysis was used to determine the influence of the input parameters (cutting speed, feed per revolution and type of kinematic system) on the geometrical and dimensional errors of the hole. From the analysis, it is evident that the kinematic system had a significant effect on the hole roundness error.

10.
Materials (Basel) ; 13(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028691

RESUMO

In industries such as aerospace and automotive, drilling many holes is commonly required to assemble different structures where machined holes need to comply with tight geometric tolerances. Multi-spindle drilling using a poly-drill head is an industrial hole-making approach that allows drilling several holes simultaneously. Optimizing process parameters also improves machining processes. This work focuses on the optimization of drilling parameters and two drilling processes-namely, one-shot drilling and multi-hole drilling-using the Taguchi method. Analysis of variance and regression analysis was implemented to indicate the significance of drilling parameters and their impact on the measured responses i.e., surface roughness and hole size. From the Taguchi optimization, optimal drilling parameters were found to occur at a low cutting speed and feed rate using a poly-drill head. Furthermore, a fuzzy logic approach was employed to predict the surface roughness and hole size. It was found that the fuzzy measured values were in good agreement with the experimental values; therefore, the developed models can be effectively used to predict the surface roughness and hole size in multi-hole drilling. Moreover, confirmation tests were performed to validate that the Taguchi optimized levels and fuzzy developed models effectively represent the surface roughness and hole size.

11.
Materials (Basel) ; 12(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717145

RESUMO

Hybrid stack drilling is a very common operation used in the assembly of high-added-value components, which combines the use of composite materials and metallic alloys. This process entails the complexity of machining very dissimilar materials, simultaneously, on account of the interactions that are produced between them, during machining. This study analyzed the influence of Minimum Quantity Lubrication (MQL) on the performance of diamond-coated carbide tools when drilling Ti/carbon fiber reinforced plastics (CFRP)/Ti stacks. The main wear mechanism observed was diamond-coating detachment, followed by fragile breaks in the main cutting-edge. The tests done with the lower lubrication levels have shown an important adhesion of titanium (mainly on the secondary cutting-edge) and a higher friction between the tool and the workpiece, producing higher temperatures on the cutting region and a thermal softening effect on the workpiece. These phenomena affect the evolution of cutting power consumption with tool wear in the titanium layer. Regarding the quality of the test specimen, no significant differences were observed between the lubrication levels tested.

12.
Polymers (Basel) ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652952

RESUMO

The performance of a precisely controlled drilling technique is critical in the fabrication process of microstructured polymer optical fibres. For the creation of a holey preform, adequate drilling bits with large length-to-diameter ratios provide the ability of machining preforms with complex structures and large lengths in a relatively short time. In this work, we analysed different drilling bits and techniques that can be employed for the creation of such preforms, and key parameters characterising the quality of the drilled holes, such as surface rugosity, diameter deviation, coaxiality and cylindricity were measured. For this purpose, based on theoretical simulations, four rings of air holes arranged in a hexagonal pattern were drilled in the preforms with different drill bits, and the experimental results for the above mentioned parameters have been presented. Additionally, optical power distribution of the fabricated microstructured polymer optical fibres was theoretically calculated and experimentally measured.

13.
Materials (Basel) ; 11(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513850

RESUMO

Hole quality in drilling is considered a precursor for reliable and secure component assembly, ensuring product integrity and functioning service life. This paper aims to evaluate the influence of the key process parameters on drilling performance. A series of drilling tests with new TiN-coated high speed steel (HSS) bits are performed, while thrust force and torque are measured with the aid of an in-house built force dynamometer. The effect of process mechanics on hole quality, e.g., dimensional accuracy, burr formation, surface finish, is evaluated in relation to drill-bit wear and chip formation mechanism. Experimental results indicate that the feedrate which dictates the uncut chip thickness and material removal rate is the most dominant factor, significantly impacting force and hole quality. For a given spindle speed range, maximum increase of axial force and torque is 44.94% and 47.65%, respectively, when feedrate increases from 0.04 mm/rev to 0.08 mm/rev. Stable, jerk-free cutting at feedrate of as low as 0.04 mm/rev is shown to result in hole dimensional error of less than 2%. A low feedrate along with high spindle speed may be preferred. The underlying tool wear mechanism and progression needs to be taken into account when drilling a large number of holes. The findings of the paper clearly signify the importance and choice of drilling parameters and provide guidelines for manufacturing industries to enhance a part's dimensional integrity and productivity.

14.
Materials (Basel) ; 11(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126182

RESUMO

Plastic matrix composite materials are an excellent choice for structural applications where high strength-weight and stiffness-weight ratios are required. These materials are being increasingly used in diverse industrial sectors, particularly in aerospace. Due to the strict tolerances required, they are usually machined with drilling cycles due to the type of mounting through rivets. In this sense, laser beam drilling is presented as an alternative to conventional drilling due to the absence of tool wear, cutting forces, or vibrations during the cutting process. However, the process carries with it other problems that compromise the integrity of the material. One of these is caused by the high temperatures generated during the interaction between the laser and the material. In this work, variance analysis is used to study the influence of scanning speed and frequency on macro geometric parameters, surface quality, and defects (taper and heat affected zone). Also, in order to identify problems in the wall of the drill, stereoscopic optical microscopy (SOM) and scanning electron microscopy (SEM) techniques are used. This experimental procedure reveals the conditions that minimize deviations, defects, and damage in machining holes.

15.
Materials (Basel) ; 9(10)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28773950

RESUMO

Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA