Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Malar J ; 21(1): 13, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027049

RESUMO

BACKGROUND: Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. METHODS: A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. RESULTS: A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. CONCLUSION: This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities.


Assuntos
Anopheles/fisiologia , Ecossistema , Geografia , Larva/fisiologia , Malária/parasitologia , Mosquitos Vetores/fisiologia , Estações do Ano , Animais , Brasil/epidemiologia , Estudos Longitudinais , Malária/epidemiologia
2.
J Infect Dis ; 223(8): 1466-1477, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32822474

RESUMO

BACKGROUND: Malaria is highly heterogeneous: its changing malaria microepidemiology needs to be addressed to support malaria elimination efforts at the regional level. METHODS: A 3-year, population-based cohort study in 2 settings in the Peruvian Amazon (Lupuna, Cahuide) followed participants by passive and active case detection from January 2013 to December 2015. Incidence and prevalence rates were estimated using microscopy and polymerase chain reaction (PCR). RESULTS: Lupuna registered 1828 infections (1708 Plasmodium vivax, 120 Plasmodium falciparum; incidence was 80.7 infections/100 person-years (95% confidence interval [CI] , 77.1-84.5). Cahuide detected 1046 infections (1024 P vivax, 20 P falciparum, 2 mixed); incidence was 40.2 infections/100 person-years (95% CI, 37.9-42.7). Recurrent P vivax infections predominated onwards from 2013. According to PCR data, submicroscopic predominated over microscopic infections, especially in periods of low transmission. The integration of parasitological, entomological, and environmental observations evidenced an intense and seasonal transmission resilient to standard control measures in Lupuna and a persistent residual transmission after severe outbreaks were intensively handled in Cahuide. CONCLUSIONS: In 2 exemplars of complex local malaria transmission, standard control strategies failed to eliminate submicroscopic and hypnozoite reservoirs, enabling persistent transmission.


Assuntos
Malária Falciparum , Malária Vivax , Estudos de Coortes , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Peru/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Prevalência
3.
J Infect Dis ; 223(12 Suppl 2): S99-S110, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906225

RESUMO

BACKGROUND: Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS: By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS: Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS: High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.


Assuntos
Anopheles/parasitologia , Mordeduras e Picadas , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Plasmodium vivax/isolamento & purificação , Adulto , Animais , Humanos , Incidência , Insetos Vetores , Malária/epidemiologia , Peru/epidemiologia , Plasmodium vivax/genética , Reação em Cadeia da Polimerase , Prevalência
4.
Malar J ; 18(1): 334, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570113

RESUMO

BACKGROUND: Mosquito saliva elicits immune responses in humans following mosquito blood feeding. Detection of human antibodies recognizing the Anopheles gambiae salivary gland protein 6 (gSG6) or the gSG6-P1 peptide in residents of Africa, South America and Southeast Asia suggested the potential for these antibodies to serve as a universal marker to estimate human biting rates. Validating the utility of this approach requires concurrent comparisons of anopheline biting rates with antibodies to the gSG6 protein to determine the sensitivity and specificity of the assay for monitoring changes in vector populations. This study investigated whether seroprevalence of anti-gSG6 antibodies in humans reflected the relative exposure to Anopheles farauti bites in the Solomon Islands as estimated from sympatric human landing catches. METHODS: Human biting rates by An. farauti were estimated by landing catches at 10 sampling sites in each of 4 villages during the wet and dry seasons. Human serum samples from these same villages were also collected during the wet and dry seasons and analysed for antibody recognition of the gSG6 antigen by the Luminex xMAP© platform. Antibody titres and prevalence were compared to HLCs at the sampling sites nearest to participants' residences for utility of anti-gSG6 antibodies to estimate human exposure to anopheline bites. RESULTS: In this study in the Solomon Islands only 11% of people had very high anti-gSG6 antibody titres, while other individuals did not recognize gSG6 despite nightly exposures of up to 190 bites by An. farauti. Despite clear spatial differences in the human biting rates within and among villages, associations between anti-gSG6 antibody titres and biting rates were not found. CONCLUSIONS: Few studies to date have concurrently measured anopheline biting rates and the prevalence of human antibodies to gSG6. The lack of association between anti-gSG6 antibody titres and concurrently measured human biting rates suggests that the assay for human anti-gSG6 antibodies lacks sufficient sensitivity to be a biomarker of An. farauti exposure at an epidemiologically relevant scale. These findings imply that an improvement in the sensitivity of serology to monitor changes in anopheline biting exposure may require the use of saliva antigens from local anophelines, and this may be especially true for species more distantly related to the African malaria vector An. gambiae.


Assuntos
Anopheles , Imunoglobulina G/sangue , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/imunologia , Saliva/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Biomarcadores/sangue , Feminino , Humanos , Melanesia , Mosquitos Vetores , Estações do Ano , Estudos Soroepidemiológicos
5.
Sci Rep ; 14(1): 14294, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906949

RESUMO

The applicability of the specific human IgG antibody response to Anopheles gambiae salivary Gland Protein-6 peptide 1 (gSG6-P1 salivary peptide) as a biomarker able to distinguish the level of exposure to mosquito bites according to seasonal variations has not yet been evaluated in Central African regions. The study aimed to provide the first reliable data on the IgG anti-gSG6-P1 response in rural area in Cameroon according to the dry- and rainy-season. Between May and December 2020, dry blood samples were collected from people living in the Bankeng village in the forest area of the Centre region of Cameroon. Malaria infection was determined by thick-blood smear microscopy and multiplex PCR. The level of IgG anti-gSG6-P1 response, was assessed by enzyme-linked immunosorbent assay. Anopheles density and aggressiveness were assessed using human landing catches. The prevalence of malaria infection remains significantly higher in the rainy season than in the dry season (77.57% vs 61.44%; p = 0.0001). The specific anti-gSG6-P1 IgG response could be detected in individuals exposed to few mosquito bites and showed inter-individual heterogeneity even when living in the same exposure area. In both seasons, the level of anti-gSG6-P1 IgG response was not significantly different between Plasmodium infected and non-infected individuals. Mosquito bites were more aggressive in the rainy season compared to the dry season (human biting rate-HBR of 15.05 b/p/n vs 1.5 b/p/n) where mosquito density was very low. Infected mosquitoes were found only during the rainy season (sporozoite rate = 10.63% and entomological inoculation rate-EIR = 1.42 ib/p/n). The level of IgG anti-gSG6-P1 response was significantly higher in the rainy season and correlated with HBR (p ˂ 0.0001). This study highlights the high heterogeneity of individual's exposure to the Anopheles gambiae s.l vector bites depending on the transmission season in the same area. These findings reinforce the usefulness of the anti-gSG6-P1 IgG response as an accurate immunological biomarker for detecting individual exposure to Anopheles gambiae s.l. bites during the low risk period of malaria transmission in rural areas and for the differentiating the level of exposure to mosquitoes.


Assuntos
Anopheles , Imunoglobulina G , Mordeduras e Picadas de Insetos , Proteínas e Peptídeos Salivares , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Anopheles/parasitologia , Anopheles/imunologia , Camarões/epidemiologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/sangue , Proteínas de Insetos/imunologia , Malária/epidemiologia , Malária/imunologia , Malária/sangue , Malária/transmissão , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , População Rural , Proteínas e Peptídeos Salivares/imunologia , Estações do Ano
6.
Wellcome Open Res ; 3: 109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31206035

RESUMO

Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.

7.
J Med Entomol ; 53(3): 569-576, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018444

RESUMO

Comprehensive knowledge on vector dynamics is lacking in Botswana and yet essential for effective indoor residual spraying. This study assessed some of the entomological indices that contribute to malaria transmission by an indoor-resting population of Anopheles arabiensis Patton (Diptera: Culicidae) in Tubu village, Okavango subdistrict. The pyrethroid space-spray technique and hut searches were used to sample mosquitoes. Species and bloodmeal source identification were done using the polymerase chain reaction techniques. The infective status was determined by the enzyme-linked immuno-sorbent assay test. The human blood indices (HBI), human-biting rates (HBR), and vector densities were computed. Anopheles arabiensis was the sole vector and member of the Anopheles gambiae Giles complex identified. Significant changes in vector densities were observed over seasons, while nonsignificant differences were observed among the huts (P > 0.05). The main source of bloodmeal was cattle (46.8% [65]). There were no significant differences in HBI (P > 0.05) and HBR (P > 0.05) between the seasons. All the 271 mosquitoes tested for sporozoite infection were negative. The results showed that seasonal variations in vector densities corresponded to the traditional malaria and nonmalaria seasons. The vector population was relatively more zoophagic. The HBI and HBR were not influenced by the seasons. None of the endophilic mosquitoes tested (N = 271) was positive for sporozoites. Our study provided some relevant basic information to the local malaria control program that may be used to strategize their operations if malaria elimination has to be achieved by 2017.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Malária/transmissão , Animais , Anopheles/virologia , Botsuana/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/transmissão , Comportamento Alimentar , Feminino , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/parasitologia , Insetos Vetores/parasitologia , Malária/epidemiologia , Malária/parasitologia , Masculino , Controle de Mosquitos , Plasmodium/fisiologia , População Rural , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA