Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(15): 2725-2738, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868276

RESUMO

Microbial culturing and meta-omic profiling technologies have significantly advanced our understanding of the taxonomic and functional variation of the human microbiome and its impact on host processes. The next increase in resolution will come by understanding the role of low-abundant and less-prevalent bacteria and the study of individual cell behaviors that underlie the complexity of microbial ecosystems. To this aim, single-cell techniques are being rapidly developed to isolate, culture, and characterize the genomes and transcriptomes of individual microbes in complex communities. Here, we discuss how these single-cell technologies are providing unique insights into the biology and behavior of human microbiomes.


Assuntos
Microbiota , Bactérias/genética , Genoma Microbiano , Interações entre Hospedeiro e Microrganismos , Humanos , Análise de Sequência de RNA , Análise de Célula Única
2.
Cell ; 183(3): 666-683.e17, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32991841

RESUMO

A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.


Assuntos
Tecido Adiposo/microbiologia , Translocação Bacteriana , Microbioma Gastrointestinal , Mesentério/microbiologia , Tecido Adiposo/patologia , Animais , Biodiversidade , Biomarcadores/metabolismo , Polaridade Celular , Células Cultivadas , Colite Ulcerativa/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Metagenoma , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Ribossômico 16S/genética , Células-Tronco/metabolismo
3.
Cell ; 176(3): 649-662.e20, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661755

RESUMO

The body-wide human microbiome plays a role in health, but its full diversity remains uncharacterized, particularly outside of the gut and in international populations. We leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs [uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand underrepresented phyla, and are enriched in non-Westernized populations (40% of the total SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper microbiome analyses and increase the average mappability of metagenomic reads from 67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus identify thousands of microbial genomes from yet-to-be-named species, expand the pangenomes of human-associated microbes, and allow better exploitation of metagenomic technologies.


Assuntos
Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , Big Data , Variação Genética/genética , Geografia , Humanos , Estilo de Vida , Filogenia , Análise de Sequência de DNA/métodos
4.
Cell ; 172(6): 1216-1227, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522743

RESUMO

The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.


Assuntos
Evolução Molecular , Variação Genética , Metagenoma/genética , Microbiota/genética , Animais , Ecossistema , Transferência Genética Horizontal , Especificidade de Hospedeiro , Humanos
5.
Annu Rev Microbiol ; 77: 193-212, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100405

RESUMO

Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.


Assuntos
Bacteriófagos , Microbiota , Animais , Archaea/genética , Bactérias/genética , Genômica
6.
Clin Microbiol Rev ; 37(2): e0006022, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717124

RESUMO

SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Transplante de Microbiota Fecal/métodos , Humanos , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/microbiologia , Animais
7.
J Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718217

RESUMO

BACKGROUND: The substantial risk for respiratory and invasive infections with Streptococcus pneumoniae (Spn) among people with HIV-1 (PWH) begins with asymptomatic colonization. The frequency of Spn colonization among U.S. adults with and without HIV-1 infection is not well-characterized in the conjugate vaccine era. METHODS: We determined Spn colonization frequency by culture and specific lytA gene QPCR and microbiota profile by 16S rRNA gene sequencing in nasopharyngeal (NP) and oropharyngeal (OP) DNA from 138 PWH and 93 control adults and associated clinical characteristics. RESULTS: The frequencies of Spn colonization among PWH and controls did not differ (11.6% vs 8.6%, respectively; p=0.46) using combined results of culture and PCR, independent of vaccination or behavioral risks. PWH showed altered microbiota composition (i.e., beta-diversity. NP: p=0.0028, OP: p=0.0098), decreased alpha-diversity (NP: p=0.024, OP: p=0.0045), and differences in the relative abundance of multiple bacterial taxa. Spn colonization was associated with altered beta-diversity in the NP (p=0.011), but not OP (p=0.21). CONCLUSIONS: Despite widespread conjugate vaccine and antiretroviral use, frequencies of Spn colonization among PWH and controls are currently consistent with those reported in the pre-conjugate era. The persistently increased risk of pneumococcal disease despite ART may relate to behavioral and immunologic variables other than colonization.

8.
Infect Immun ; : e0047823, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436256

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.

9.
Emerg Infect Dis ; 30(6): 1069-1076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781679

RESUMO

Antimicrobial resistance in healthcare-associated bacterial pathogens and the infections they cause are major public health threats affecting nearly all healthcare facilities. Antimicrobial-resistant bacterial infections can occur when colonizing pathogenic bacteria that normally make up a small fraction of the human microbiota increase in number in response to clinical perturbations. Such infections are especially likely when pathogens are resistant to the collateral effects of antimicrobial agents that disrupt the human microbiome, resulting in loss of colonization resistance, a key host defense. Pathogen reduction is an emerging strategy to prevent transmission of, and infection with, antimicrobial-resistant healthcare-associated pathogens. We describe the basis for pathogen reduction as an overall prevention strategy, the evidence for its effectiveness, and the role of the human microbiome in colonization resistance that also reduces the risk for infection once colonized. In addition, we explore ideal attributes of current and future pathogen-reducing approaches.


Assuntos
Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana , Humanos , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbiota/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/microbiologia , Controle de Infecções/métodos , Bactérias/efeitos dos fármacos
10.
Annu Rev Microbiol ; 73: 335-358, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180804

RESUMO

Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.


Assuntos
Microbiota , Boca/microbiologia , Humanos , Análise Espacial
11.
BJU Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890150

RESUMO

OBJECTIVE: To comprehensively review and critically assess the literature on microbiota differences between patients with interstitial cystitis (IC)/bladder pain syndrome (BPS) and normal controls and to provide clinical practice guidelines. MATERIALS AND METHODS: In this systematic review, we evaluated previous research on microbiota disparities between IC/BPS and normal controls, as well as distinctions among IC/BPS subgroups. A comprehensive literature search was conducted across PubMed/MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials. Relevant studies were shortlisted based on predetermined inclusion and exclusion criteria, followed by quality assessment. The primary focus was identifying specific taxonomic variations among these cohorts. RESULTS: A total of 12 studies met the selection criteria. Discrepancies were adjudicated by a third reviewer. The Newcastle-Ottawa Scale was used to assess study quality. Predominantly, the studies focused on disparities in urine microbiota between IC/BPS patients and normal controls, with one study examining gut microbiota differences between the groups, and two studies exploring vaginal microbiota distinctions. Unfortunately, analyses of discrepancies in other microbiota were limited. Our findings revealed evidence of distinct bacterial abundance variations, particularly involving Lactobacillus, alongside variations in specific metabolites among IC/BPS patients compared to controls. CONCLUSIONS: Currently, there is evidence suggesting significant variations in the diversity and species composition of the urinary microbiota between individuals diagnosed with IC/BPS and control groups. In the foreseeable future, urologists should consider urine microbiota dysbiosis as a potential aetiology for IC, with potential clinical implications for diagnosis and treatment.

12.
Int J Legal Med ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594499

RESUMO

Forensic microbiology is rapidly emerging as a novel tool for human identification. The human microbiome, comprising diverse microbial communities including fungi, bacteria, protozoa, and viruses, is unique to each individual, offering a new dimension to forensic investigations. While traditional identification methods primarily rely on DNA profiling and fingerprint analysis, they face limitations when complete DNA or fingerprints profiles are unattainable or degraded. In this context, the microbial signatures of the human skin microbiome present a promising alternative due to their resilience to environmental stresses and individual-specific composition. This review explores the potential of microbiome analysis in forensic human identification, evaluating its applications, advantages, limitations, and future prospects. The uniqueness of an individual's microbial community, particularly the skin microbiota, can provide distinctive biological markers for identification purposes, while technological advancements like 16 S rRNA sequencing and metagenomic shotgun sequencing are enhancing the specificity of microbial identification, enabling detailed analysis of these complex ecological communities. Despite these promising findings, current research has not yet achieved a level of identification probability that could establish microbial analysis as a stand-alone evidence tool. Therefore, it is presently considered ancillary to traditional methods, contributing to a more comprehensive biological profile of individuals.

13.
Appl Microbiol Biotechnol ; 108(1): 339, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771520

RESUMO

The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbiota , Pele/microbiologia , Vagina/microbiologia , Pulmão/microbiologia , Boca/microbiologia , Feminino , Trato Gastrointestinal/microbiologia
14.
Adv Exp Med Biol ; 1452: 97-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805126

RESUMO

Ovarian cancer is the fifth-leading cause of cancer deaths among women due to the absence of available screening methods to identify early disease. Thus, prevention and early disease detection investigations are of high priority, surrounding a critical window of opportunity to better understand important pathogenic mechanisms of disease progression. Microorganisms modulate molecular interactions in humans that can influence states of health and disease, including ovarian cancer. While the mechanisms of infectious microbial invasion that trigger the immune-inflammatory axis are well studied in cancer research, the complex interactions that promote the transition of noninfectious healthy microbes to pathobiont expansion are less understood. As traditional research has focused on the influences of infectious pathogens on ovarian cancer development and progression, the impact of noninfectious microbes has gained scientific attention. The objective of this chapter is to summarize current evidence on the role of microbiota in epithelial ovarian cancer throughout disease.


Assuntos
Carcinoma Epitelial do Ovário , Microbiota , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/microbiologia , Carcinoma Epitelial do Ovário/microbiologia , Carcinoma Epitelial do Ovário/patologia , Microbiota/fisiologia
15.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474213

RESUMO

Next-generation sequencing technology has driven the rapid advancement of human microbiome studies by enabling community-level sequence profiling of microbiomes. Although all microbiome sequencing methods depend on recovering the DNA from a sample as a first critical step, lysis methods can be a major determinant of microbiome profile bias. Gentle enzyme-based DNA preparation methods preserve DNA quality but can bias the results by failing to open difficult-to-lyse bacteria. Mechanical methods like bead beating can also bias DNA recovery because the mechanical energy required to break tougher cell walls may shear the DNA of the more easily lysed microbes, and shearing can vary depending on the time and intensity of beating, influencing reproducibility. We introduce a non-mechanical, non-enzymatic, novel rapid microbial DNA extraction procedure suitable for 16S rRNA gene-based microbiome profiling applications that eliminates bead beating. The simultaneous application of alkaline, heat, and detergent ('Rapid' protocol) to milligram quantity samples provided consistent representation across the population of difficult and easily lysed bacteria equal to or better than existing protocols, producing sufficient high-quality DNA for full-length 16S rRNA gene PCR. The novel 'Rapid' method was evaluated using mock bacterial communities containing both difficult and easily lysed bacteria. Human fecal sample testing compared the novel Rapid method with a standard Human Microbiome Project (HMP) protocol for samples from lung cancer patients and controls. DNA recovered from both methods was analyzed using 16S rRNA gene sequencing of the V1V3 and V4 regions on the Illumina platform and the V1V9 region on the PacBio platform. Our findings indicate that the 'Rapid' protocol consistently yielded higher levels of Firmicutes species, which reflected the profile of the bacterial community structure more accurately, which was confirmed by mock community evaluation. The novel 'Rapid' DNA lysis protocol reduces population bias common to bead beating and enzymatic lysis methods, presenting opportunities for improved microbial community profiling, combined with the reduction in sample input to 10 milligrams or less, and it enables rapid transfer and simultaneous lysis of 96 samples in a standard plate format. This results in a 20-fold reduction in sample handling time and an overall 2-fold time advantage when compared to widely used commercial methods. We conclude that the novel 'Rapid' DNA extraction protocol offers a reliable alternative for preparing fecal specimens for 16S rRNA gene amplicon sequencing.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Genes de RNAr , Reprodutibilidade dos Testes , DNA Bacteriano/genética , Microbiota/genética , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
Clin Microbiol Rev ; 35(3): e0014021, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35658516

RESUMO

Candidate phyla radiation (CPR) is an emerging division of the bacterial domain within the human microbiota. Still poorly known, these microorganisms were first described in the environment in 1981 as "ultramicrobacteria" with a cell volume under 0.1 µm3 and were first associated with the human oral microbiota in 2007. The evolution of technology has been paramount for the study of CPR within the human microbiota. In fact, since these ultramicrobacteria have yet to be axenically cultured despite ongoing efforts, progress in imaging technology has allowed their observation and morphological description. Although their genomic abilities and taxonomy are still being studied, great strides have been made regarding their taxonomic classification, as well as their lifestyle. In addition, advancements in next-generation sequencing and the continued development of bioinformatics tools have allowed their detection as commensals in different human habitats, including the oral cavity and gastrointestinal and genital tracts, thus highlighting CPR as a nonnegligible part of the human microbiota with an impact on physiological settings. Conversely, several pathologies present dysbiosis affecting CPR levels, including inflammatory, mucosal, and infectious diseases. In this exhaustive review of the literature, we provide a historical perspective on the study of CPR, an overview of the methods available to study these organisms and a description of their taxonomy and lifestyle. In addition, their distribution in the human microbiome is presented in both homeostatic and dysbiotic settings. Future efforts should focus on developing cocultures and, if possible, axenic cultures to obtain isolates and therefore genomes that would provide a better understanding of these ultramicrobacteria, the importance of which in the human microbiome is undeniable.


Assuntos
Microbiota , Bactérias , Disbiose , Humanos , Boca/microbiologia
17.
Hist Philos Life Sci ; 46(2): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565750

RESUMO

This article reformulates Stephan Helmreich´s the ¨microbiomisation of race¨ as the historiality of otherness in the foundations of human microbiome science. Through the lens of my ethnographic fieldwork of a transnational community of microbiome scientists that conducted a landmark human microbiome research on indigenous microbes and its affiliated and first personalised microbiome initiative, the American Gut Project, I follow and trace the key actors, experimental systems and onto-epistemic claims in the emergence of human microbiome science a decade ago. In doing so, I show the links between the reinscription of race, comparative research on the microbial genetic variation of human populations and the remining of bioprospected data for personalised medicine. In these unpredictable research movements, the microbiome of non-Western peoples and territories is much more than a side project or a specific approach within the field: it constitutes the nucleus of its experimental system, opening towards subsequent and cumulative research processes and knowledge production in human microbiome science. The article demonstrates that while human microbiome science is articulated upon the microbial 'makeup' of non-wester(nised) communities, societies, and locales, its results and therapeutics are only applicable to medical conditions affecting rich nations (i.e., inflammatory, autoimmune, and metabolic diseases). My reformulation of ¨microbiomisation of race¨ as the condition of possibility of human microbiome science reveals that its individual dimension is sustained by microbial DNA data from human populations through bioprospecting practices and gains meaning through personalised medicine initiatives, informal online networks of pseudoscientific and commodified microbial-related evidence.


Assuntos
Microbiota , Humanos , Estados Unidos , Grupos Raciais
18.
Vopr Pitan ; 93(1): 6-21, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555606

RESUMO

This article presents an analysis of some of the results of the work of the Federal Research Center for Nutrition and Biotechnology (Center) in recent years, highlighting the most important, promising areas of Nutrition Science and Food Hygiene that need further development. The priority area of Center functioning is scientific support for the implementation of the Doctrine of Food Security of the Russian Federation (Decree of the President of the Russian Federation dated January 21, 2020 No. 20), Decree of the President of the Russian Federation dated July 21, 2020 No. 474 «On the national development goals of the Russian Federation for the period until 2030 «in terms of ensuring an increase in life expectancy and improving the life quality of the population, the Strategy for Improving the Quality of Food Products in the Russian Federation until 2030 (Order of the Government of the Russian Federation dated June 29, 2016 No. 1364-r). The Center coordinates all research on medical nutrition problems in the Russian Federation within the framework of the work of the Problem Commission on Nutrition Hygiene of the Scientific Council of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare, the Scientific Council of the Russian Academy of Sciences on Medical Nutrition Problems, the Scientific and Technical Committee of the Comprehensive Scientific Program «Priority Research in the Field of Nutrition of the Population¼, Profile Commission on Dietetics of the Expert Council in the Field of Health of the Ministry of Healthcare of Russian Federation, ensuring the implementation of their results with the participation of members of the Consortium "Healthcare, Nutrition, Demography". The most important area of the Center's work is scientific and expert support in the field of international and national technical regulation of the production and turnover of foods and raw materials, in particular, the work of the Russian national contact point of the Codex Alimentarius Commission (established by FAO and WHO), as well as the work of the Russian side in the Eurasian Economic Commission regarding the preparation of proposals for technical regulations of the Customs Union in the field of food safety, evaluation of draft technical regulations and amendments and additions to them.


Assuntos
Alimentos , Estado Nutricional , Humanos , Inocuidade dos Alimentos/métodos , Federação Russa , Ingestão de Alimentos
19.
J Bacteriol ; 205(2): e0039322, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36744900

RESUMO

Gardnerella spp. are associated with bacterial vaginosis in which normally dominant lactobacilli are replaced with facultative and anaerobic bacteria, including Gardnerella spp. Co-occurrence of multiple species of Gardnerella is common in the vagina, and competition for nutrients such as glycogen likely contributes to the differential abundances of Gardnerella spp. Glycogen must be digested into smaller components for uptake, a process that depends on the combined action of glycogen-degrading enzymes. In this study, the ability of culture supernatants of 15 isolates of Gardnerella spp. to produce glucose, maltose, maltotriose, and maltotetraose from glycogen was demonstrated. Carbohydrate-active enzymes (CAZymes) were identified bioinformatically in Gardnerella proteomes using dbCAN2. Identified proteins included a single-domain α-amylase (EC 3.2.1.1) (encoded by all 15 isolates) and an α-amylase-pullulanase (EC 3.2.1.41) containing amylase, carbohydrate binding modules, and pullulanase domains (14/15 isolates). To verify the sequence-based functional predictions, the amylase and pullulanase domains of the α-amylase-pullulanase and the single-domain α-amylase were each produced in Escherichia coli. The α-amylase domain from the α-amylase-pullulanase released maltose, maltotriose, and maltotetraose from glycogen, and the pullulanase domain released maltotriose from pullulan and maltose from glycogen, demonstrating that the Gardnerella α-amylase-pullulanase is capable of hydrolyzing α-1,4 and α-1,6 glycosidic bonds. Similarly, the single-domain α-amylase protein also produced maltose, maltotriose, and maltotetraose from glycogen. Our findings show that Gardnerella spp. produce extracellular amylase enzymes as "public goods" that can digest glycogen into maltose, maltotriose, and maltotetraose that can be used by the vaginal microbiota. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms, and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community, but little is known about the contribution of bacterial enzymes to the metabolism of glycogen, a major food source available to vaginal bacteria. The significance of our research is characterizing the activity of enzymes conserved in Gardnerella species that contribute to the ability of these bacteria to utilize glycogen.


Assuntos
Microbiota , Nascimento Prematuro , Vaginose Bacteriana , Feminino , Humanos , alfa-Amilases/metabolismo , Bactérias/metabolismo , Domínio Catalítico , Gardnerella , Glicogênio/metabolismo , Maltose , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
20.
J Biol Chem ; 298(7): 102088, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654142

RESUMO

The gut microbiome has been shown to have key implications in the pathogenesis of Parkinson's disease (PD). The Escherichia coli functional amyloid CsgA is known to accelerate α-synuclein aggregation in vitro and induce PD symptoms in mice. However, the mechanism governing CsgA-mediated acceleration of α-synuclein aggregation is unclear. Here, we show that CsgA can form stable homodimeric species that correlate with faster α-synuclein amyloid aggregation. Furthermore, we identify and characterize new CsgA homologs encoded by bacteria present in the human microbiome. These CsgA homologs display diverse aggregation kinetics, and they differ in their ability to modulate α-synuclein aggregation. Remarkably, we demonstrate that slowing down CsgA aggregation leads to an increased acceleration of α-synuclein aggregation, suggesting that the intrinsic amyloidogenicity of gut bacterial CsgA homologs affects their ability to accelerate α-synuclein aggregation. Finally, we identify a complex between CsgA and α-synuclein that functions as a platform to accelerate α-synuclein aggregation. Taken together, our work reveals complex interplay between bacterial amyloids and α-synuclein that better informs our understanding of PD causation.


Assuntos
Amiloide , Proteínas de Escherichia coli , Microbiota , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/metabolismo , Animais , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA