Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107573, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009340

RESUMO

Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity towards specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7 and -12) towards a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I vs. type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity towards poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance (STD-NMR) experiments. Particularly, we identified oligosaccharide blood group A type 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited IL-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.

2.
J Nutr ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069270

RESUMO

BACKGROUND: Multiple studies have demonstrated associations between the early life gut microbiome and incidence of inflammatory and auto-immune disease in childhood. While microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVE: Here, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS: Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis (B. infantis) positive (BIP) or Bifidobacterium longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 days. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS: We show that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum, and Erysipelatoclostridium. The BIP microbiome produced two-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of MLN cells to PMA and LPS and increased serum IgA and IgG levels. CONCLUSIONS: Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.

3.
Arch Microbiol ; 206(2): 58, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191870

RESUMO

HMOs (Human milk oligosaccharide) has an impact on maternal and infant health. Colostrum samples of 70 breastfeeding women in China were collected and recorded clinical characteristics. The major oligosaccharides and microbiota were quantitated in colostrum. The concentration of fucosylated HMOs in primipara was higher than that of multipara (p = 0.030). The concentration of N-acetylated HMOs in vaginal delivery milk was less than that of cesarean (p = 0.038). Non-fucosylated HMOs of breastfeeding women were less than that of breast pump (p = 0.038). Meanwhile, the concentration of LNT was positively correlated with Lactobacillus (r = 0.250, p = 0.037). DS-LNT was negatively correlated with Staphylococcus (r = - 0.240, p = 0.045). There was a positive correlation of Streptococcus with LNFP II (r = 0.314, p = 0.011) and 3-SL (r = 0.322, p = 0.009). In addition, there was a negative correlation between 2'-FL and 3-FL (r = - 0.465, p = 0.001). There was a positive correlation between LNT and LNnT (r = 0.778, p = 0.001). Therefore, the concentration of HMOs is related to number of deliveries, delivery mode, lactation mode and perinatal antibiotic. The concentration of HMOs is related to Lactobacillus, Streptococcus and Streptococcus in colostrum. In addition, there are connections between different oligosaccharides in content. The study protocol was also registered in the ClinicalTrails.gov (ChiCTR2200064454) (Oct. 2022).


Assuntos
Microbiota , Leite Humano , Gravidez , Lactente , Feminino , Humanos , Colostro , Projetos Piloto , Lactobacillus , Oligossacarídeos
4.
Br J Nutr ; 131(9): 1506-1512, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38178715

RESUMO

This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7­76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.


Assuntos
Fórmulas Infantis , Leite Humano , Ácido N-Acetilneuramínico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Aleitamento Materno , China , Colostro/química , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição do Lactente , Leite Humano/química , Ácido N-Acetilneuramínico/análise , Oligossacarídeos/análise
5.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771321

RESUMO

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Leite Humano , Trissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Humanos , Trissacarídeos/metabolismo , Leite Humano/química , Lactose/metabolismo , Oligossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Lactente , Fucose/metabolismo
6.
J Dairy Sci ; 107(7): 4147-4160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38490539

RESUMO

Human milk oligosaccharides (HMO) affect gut microbiota during neonatal development, particularly with respect to the immune system. Bovine milk-based infant formulas have low oligosaccharide contents. Thus, efforts to fortify infant formulas with HMO are being undertaken. Two major HMO, 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL), exert anti-inflammatory effects; however, the associations between anti-inflammatory effects induced by 2'-FL and 6'-SL cotreatment and gut microbiota composition and metabolite modulation remain unclear. Therefore, in this study, we evaluated the effects of a mixture of these HMO. To determine the optimal HMO ratio for anti-inflammatory effects and elucidate its mode of action, LPS-induced inflammatory HT-29 epithelial cells and intestinal-inflamed suckling mice were treated with various mixtures of 2'-FL and 6'-SL. A 2'-FL:6'-SL ratio of 5:1 was identified as the most effective pretreatment HMO mixture in vitro; thus, this ratio was selected and used for low-, middle-, and high-dose treatments for subsequent in vivo studies. In vivo, high-dose HMO treatment restored LPS-induced inflammation symptoms, such as BW loss, colon length reduction, histological structural damage, and intestinal gene expression related to inflammatory responses. High-dose HMO was the only treatment that modulated the major phyla Bacteroidetes and Firmicutes and the genera Ihubacter, Mageeibacillus, and Saccharofermentans. These changes in microbial composition were correlated with intestinal inflammation-related gene expression and short-chain fatty acid production. To our knowledge, our study is the first to report the effects of Ihubacter, Mageeibacillus, and Saccharofermentans on short-chain fatty acid levels, which can subsequently affect inflammatory cytokine and tight junction protein levels. Conclusively, the HMO mixture exerted anti-inflammatory effects through changes in microbiota and metabolite production. These findings suggest that supplementation of infant formula with HMO may benefit formula-fed infants by forming unique microbiota contributing to neonatal development.


Assuntos
Lipopolissacarídeos , Oligossacarídeos , Camundongos , Animais , Oligossacarídeos/farmacologia , Inflamação/tratamento farmacológico , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Trissacarídeos/farmacologia , Lactose/análogos & derivados
7.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004139

RESUMO

The transgalactosylase activity of ß-galactosidases offers a convenient and promising strategy for conversion of lactose into high-value oligosaccharides, such as galacto-oligosaccharides (GOS) and human milk oligosaccharides (HMOs). In this study, we cloned and biochemically characterized a novel C-terminally truncated ß-galactosidase (PaBgal2A-D) from Paenibacillus antarcticus with high transglycosylation activity. PaBgal2A-D is a member of glycoside hydrolase (GH) family 2. The optimal pH and temperature of PaBgal2A-D were determined to be pH 6.5 and 50°C, respectively. It was relatively stable within pH 5.0-8.0 and up to 50°C. PaBgal2A-D showed high transglycosylation activity for GOS synthesis, and the maximum yield of 50.8% (wt/wt) was obtained in 2 h. Moreover, PaBgal2A-D could synthesize lacto-N-neotetraose (LNnT) using lactose and lacto-N-triose II (LNT2), with a conversion rate of 16.4%. This study demonstrated that PaBgal2A-D could be a promising tool to prepare GOS and LNnT.

8.
Int J Toxicol ; 43(1): 27-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37769680

RESUMO

Lacto-N-triose II (LNT II), an essential human milk oligosaccharide and precursor to lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), was evaluated for safety. Genotoxicity was assessed through in vitro tests including Bacterial Reverse Mutation Test and mammalian cell micronucleus test, and a subchronic oral gavage toxicity study was conducted on juvenile Sprague-Dawley rats. In this study, LNT II was administered at dose levels of 0, 1,500, 2,500, or 5,000 mg/kg body weight (bw)/day for 90 days, followed by a 4-week treatment-free recovery period. LNT II was non-genotoxic in the in vitro assays. No compound-related effects were observed across all dosage levels based on various measures, including clinical observations, body weight gain, feed consumption, clinical pathology, organ weights, and histopathology. Consequently, the highest dosage of 5,000 mg/kg bw/day was established as the no-observed-adverse-effect-level (NOAEL). These results suggest the safe use of LNT II in young children formula and as a food ingredient, within the limits found naturally in human breast milk.


Assuntos
Leite Humano , Oligossacarídeos , Trissacarídeos , Humanos , Ratos , Animais , Feminino , Criança , Pré-Escolar , Ratos Sprague-Dawley , Peso Corporal , Mamíferos
9.
Pediatr Surg Int ; 40(1): 35, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216767

RESUMO

PURPOSE: Necrotizing enterocolitis (NEC) is a severe intestinal disease primarily affecting premature infants, marked by impaired epithelial regeneration. Breastfed infants are less susceptible to NEC than formula-fed ones, and human milk oligosaccharides (HMO) found in breast milk have prebiotic properties that can protect against NEC. However, it is unclear how HMOs influence intestinal epithelium regeneration in relation to the gut microbiota. METHODS: Broad-spectrum antibiotics were administered to pregnant dams to reduce the microbiota in offspring. NEC was induced through administration of hyperosmolar formula, lipopolysaccharide, and hypoxia from postnatal days (p) 5-9. Intestinal epithelial organoids were derived from p9 mice. HMOs were isolated from human donor breast milk and then solubilized in the formula for each feed or culture media for organoids. RESULTS: HMOs did not alter the microbiota profile in the presence of a normal or reduced microbiota. In the reduced microbiota, HMO treatment decreased NEC intestinal injury, and increased proliferation and stem cell activity. Additionally, in the complete absence of the microbiota, HMOs stimulated intestinal organoid growth. CONCLUSION: This study demonstrates that HMOs promoted intestinal epithelial regeneration independent of the gut microbiota. These findings provide further insight into the various benefits HMOs may have in the protection against NEC.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Microbiota , Lactente , Feminino , Gravidez , Recém-Nascido , Animais , Humanos , Camundongos , Leite Humano , Enterocolite Necrosante/prevenção & controle , Mucosa Intestinal , Oligossacarídeos/farmacologia , Regeneração
10.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255883

RESUMO

In various life forms, fucose-containing glycans play vital roles in immune recognition, developmental processes, plant immunity, and host-microbe interactions. Together with glucose, galactose, N-acetylglucosamine, and sialic acid, fucose is a significant component of human milk oligosaccharides (HMOs). Fucosylated HMOs benefit infants by acting as prebiotics, preventing pathogen attachment, and potentially protecting against infections, including HIV. Although the need for fucosylated derivatives is clear, their availability is limited. Therefore, synthesis methods for various fucosylated oligosaccharides are explored, employing enzymatic approaches and α-L-fucosidases. This work aimed to characterise α-L-fucosidases identified in an alpaca faeces metagenome. Based on bioinformatic analyses, they were confirmed as members of the GH29A subfamily. The recombinant α-L-fucosidases were expressed in Escherichia coli and showed hydrolytic activity towards p-nitrophenyl-α-L-fucopyranoside and 2'-fucosyllactose. Furthermore, the enzymes' biochemical properties and kinetic characteristics were also determined. All four α-L-fucosidases could catalyse transfucosylation using a broad diversity of fucosyl acceptor substrates, including lactose, maltotriose, L-serine, and L-threonine. The results contribute insights into the potential use of α-L-fucosidases for synthesising fucosylated amino acids.


Assuntos
Camelídeos Americanos , Lactente , Animais , Humanos , Fucose , Metagenoma , alfa-L-Fucosidase/genética , Escherichia coli/genética , Fezes , Lactose
11.
Am J Physiol Gastrointest Liver Physiol ; 325(1): G23-G41, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120853

RESUMO

Necrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in premature infants. One of the most devastating complications of NEC is the development of NEC-induced brain injury, which manifests as impaired cognition that persists beyond infancy and which represents a proinflammatory activation of the gut-brain axis. Given that oral administration of the human milk oligosaccharides (HMOs) 2'-fucosyllactose (2'-FL) and 6'-sialyslactose (6'-SL) significantly reduced intestinal inflammation in mice, we hypothesized that oral administration of these HMOs would reduce NEC-induced brain injury and sought to determine the mechanisms involved. We now show that the administration of either 2'-FL or 6'-SL significantly attenuated NEC-induced brain injury, reversed myelin loss in the corpus callosum and midbrain of newborn mice, and prevented the impaired cognition observed in mice with NEC-induced brain injury. In seeking to define the mechanisms involved, 2'-FL or 6'-SL administration resulted in a restoration of the blood-brain barrier in newborn mice and also had a direct anti-inflammatory effect on the brain as revealed through the study of brain organoids. Metabolites of 2'-FL were detected in the infant mouse brain by nuclear magnetic resonance (NMR), whereas intact 2'-FL was not. Strikingly, the beneficial effects of 2'-FL or 6'-SL against NEC-induced brain injury required the release of the neurotrophic factor brain-derived neurotrophic factor (BDNF), as mice lacking BDNF were not protected by these HMOs from the development of NEC-induced brain injury. Taken in aggregate, these findings reveal that the HMOs 2'-FL and 6'-SL interrupt the gut-brain inflammatory axis and reduce the risk of NEC-induced brain injury.NEW & NOTEWORTHY This study reveals that the administration of human milk oligosaccharides, which are present in human breast milk, can interfere with the proinflammatory gut-brain axis and prevent neuroinflammation in the setting of necrotizing enterocolitis, a major intestinal disorder seen in premature infants.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Enterocolite Necrosante , Humanos , Recém-Nascido , Lactente , Feminino , Animais , Camundongos , Leite Humano/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Doenças Neuroinflamatórias , Enterocolite Necrosante/etiologia , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Oligossacarídeos/análise , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/complicações , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo
12.
Chemistry ; 29(64): e202302288, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37639512

RESUMO

Human milk oligosaccharides (HMO) have emerged as a very active area of research in glycoscience and nutrition. HMO are involved in the early development of infants and may help to prevent certain diseases. The development of chemical methods for obtaining individual HMO aids the global effort dedicated to understanding the roles of these biomolecules. Reported herein is the chemical synthesis of two common core hexasaccharides found in human milk, i. e. para-lacto-N-hexaose (pLNH) and para-lacto-N-neohexaose (pLNnH). After screening multiple leaving groups and temporary protecting group combinations, a 3+3 convergent coupling strategy was found to work best for obtaining these linear glycans.


Assuntos
Leite Humano , Oligossacarídeos , Lactente , Humanos , Leite Humano/química , Oligossacarídeos/química , Polissacarídeos/análise , Hidrolases
13.
J Nutr ; 152(12): 2727-2733, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36111739

RESUMO

BACKGROUND: Our previous studies revealed that human-milk oligosaccharides (HMOs) have health benefits for nursing infants and their concentrations change dynamically over 24 mo of lactation. Yet, the extent to which HMOs vary over the short term (days) and in response to acute factors such as maternal diet is unclear. OBJECTIVE: The purpose of this study was to determine the stability of HMO concentrations over 7 d and in response to a standard meal and sugar-sweetened beverage (SSB) over 6 h. METHODS: In this ancillary study, lactating mothers were enrolled at 6 wk postpartum. Participants received in-person instructions and materials to complete procedures at home. In the 1-wk experiment (n = 11), mothers pumped a milk sample at 07:00 h for 7 consecutive days. In the 6-h experiment (n = 35), mothers pumped a milk sample after an overnight fast at 06:00 h and then consumed a standard meal plus SSB provided by the study team. Mothers pumped a milk sample every hour for 6 consecutive hours. Samples were analyzed for the 19 most abundant HMOs. Repeated-measures ANOVA was used to test changes in HMO concentrations over time, reported as F(dftime, dferror) = F value, P value. RESULTS: Concentrations of all assayed HMOs were stable over 7 consecutive days, including, for example, the most widely studied HMOs in relation to infant health: 2'-fucosyllactose (2'FL) [F(2,17) = 0.39, P = 0.65], disialyl-lacto-N-tetraose (DSLNT) [F(4, 37) = 0.60, P = 0.66], and lacto-N-neotetraose (LNnT) [F(3, 32) = 1.5, P = 0.23]. Concentrations of all assayed HMOs were stable in response to a standard meal plus SSB. For example, fasted baseline concentrations of 2'FL, DSLNT, and LNnT were 2310 ± 1620 µg/mL, 560 ± 290 µg/mL, and 630 ± 290 µg/mL, respectively, and there were no changes in 2'FL [F(4, 119) = 1.9, P = 0.13], DSLNT [F(4, 136) = 0.39, P = 0.83], and LNnT [F(4, 120) = 0.64, P = 0.63] over 6 consecutive hours. CONCLUSIONS: HMO concentrations are stable over 1 wk of lactation and are not acutely affected by a standard meal plus SSB in mothers.


Assuntos
Aleitamento Materno , Lactação , Lactente , Feminino , Humanos , Leite Humano , Oligossacarídeos , Mães
14.
Crit Rev Food Sci Nutr ; 63(29): 9875-9894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35531941

RESUMO

The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.


Assuntos
Ácido N-Acetilneuramínico , Doenças Neurodegenerativas , Lactente , Humanos , Ácido N-Acetilneuramínico/análise , Encéfalo , Leite Humano/química , Cognição , Oligossacarídeos
15.
Crit Rev Food Sci Nutr ; 63(28): 9364-9378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35438024

RESUMO

Human milk oligosaccharides (HMOs) are receiving wide interest and high attention due to their health benefits, especially for newborns. The HMOs-fortified products are expected to mimic human milk not only in the kinds of added oligosaccharides components but also the appropriate proportion between these components, and further provide the nutrition and physiological effects of human milk to newborns as closely as possible. In comparison to intensively studied 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL) has less attention in almost all respects. Nerveless, 3-FL naturally occurs in breast milk and increases roughly over the course of lactation with a nonnegligible content, and plays an irreplaceable role in human milk and delivers functional properties to newborns. According to the safety evaluation, 3-FL shows no acute oral toxicity, genetic toxicity, and subchronic toxicity. It has been approved as generally recognized as safe (GRAS). Biological production of 3-FL can be realized by enzymatic and cell factory approaches. The α1,3- or α1,3/4-fucosyltransferase is the key enzyme for 3-FL biosynthesis. Various metabolic engineering strategies have been applied to enhance 3-FL yield using cell factory approach. In conclusion, this review gives an overview of the recent scientific literatures regarding occurrence, bioactive properties, safety evaluation, and biotechnological preparation of 3-FL.


Assuntos
Leite Humano , Oligossacarídeos , Feminino , Humanos , Recém-Nascido , Oligossacarídeos/metabolismo , Trissacarídeos/genética , Trissacarídeos/metabolismo , Aleitamento Materno , Lactação , Biotecnologia
16.
Crit Rev Food Sci Nutr ; : 1-10, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744615

RESUMO

Human milk oligosaccharides (HMOs), which are a group of complex carbohydrates highly abundant in human milk, have been recognized as critical functional biomolecules for infant health. Lacto-N-tetraose (LNT) is one of the most abundant HMO members and the most dominant core structure of HMO. The promising physiological effects of LNT have been well documented, including prebiotic property, antiadhesive antimicrobial activity, and antiviral effect. Its safety has been evaluated and it has been commercially added to infant formula as a functional ingredient. Because of great commercial importance of LNT, increasing attention has been paid to its highly efficient biological production. In particular, microbial synthesis based on metabolic engineering displays obvious advantages in large-scale production of LNT. This review contains important information about the recent progress in physiological effects, safety evaluation, and biosynthesis of LNT.

17.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341681

RESUMO

Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.

18.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37035930

RESUMO

Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.

19.
Br J Nutr ; 130(8): 1416-1426, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36803617

RESUMO

The current definition of dietary fibre was adopted by the Codex Alimentarius Commission in 2009, but implementation requires updating food composition databases with values based on appropriate analysis methods. Previous data on population intakes of dietary fibre fractions are sparse. We studied the intake and sources of total dietary fibre (TDF) and dietary fibre fractions insoluble dietary fibre (IDF), dietary fibre soluble in water but insoluble in 76 % aqueous ethanol (SDFP) and dietary fibre soluble in water and soluble in 76 % aqueous ethanol (SDFS) in Finnish children based on new CODEX-compliant values of the Finnish National Food Composition Database Fineli. Our sample included 5193 children at increased genetic risk of type 1 diabetes from the Type 1 Diabetes Prediction and Prevention birth cohort, born between 1996 and 2004. We assessed the intake and sources based on 3-day food records collected at the ages of 6 months, 1, 3 and 6 years. Both absolute and energy-adjusted intakes of TDF were associated with age, sex and breast-feeding status of the child. Children of older parents, parents with a higher level of education, non-smoking mothers and children with no older siblings had higher energy-adjusted TDF intake. IDF was the major dietary fibre fraction in non-breastfed children, followed by SDFP and SDFS. Cereal products, fruits and berries, potatoes and vegetables were major food sources of dietary fibre. Breast milk was a major source of dietary fibre in 6-month-olds due to its human milk oligosaccharide content and resulted in high SDFS intakes in breastfed children.


Assuntos
Diabetes Mellitus Tipo 1 , Feminino , Humanos , Criança , Finlândia , Fibras na Dieta/análise , Ingestão de Energia , Leite Humano/química
20.
Int J Mass Spectrom ; 4832023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440090

RESUMO

Human milk oligosaccharides (HMOs) are a class of glycans that are highly abundant in human milk and contribute to the healthy growth of an infant's immune system. While new advancements in analytical methodologies have been made in glycomics, the high degree of isomeric heterogeneity and lack of authentic standards have made the high-resolution separation and accurate characterization of linkage positioning of all HMO species very challenging. Herein, we present an evaluation of the use of host-guest chemistry in conjunction with cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations for the identification of linkage positioning in three pairs of di-, tetra-, and hexasaccharide HMO isomers that only differ in the positioning of one glycosidic linkage (ß1,3 versus ß1,4). Suitable hosts, such as α/ß cyclodextrins, cucurbit[n]urils (n = 5, 7), crown ethers, cyclic peptides, and an ionophore, were used to assess host-guest inclusion complex formation as well as linkage-specific cIMS-MS trends. Our results indicated a linkage-specific trend for the [M + 2α + 2H]2+ cyclodextrin-based host-guest inclusion complexes where the ß1,3 linkage-containing isomers were always higher mobility than the ß1,4 linkage-containing ones as well one for the [M + α + ß + 2H]2+ complexes where the ß1,4 linkage-containing isomers were always higher mobility than the ß1,3 linkage-containing ones. We also observed diagnostic mobility fingerprints for the cucurbituril-based complexes. We anticipate that linkage-specific and mobility fingerprint trends can potentially aid in identifying linkage positioning for other HMO isomers as well as in complex human milk samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA