Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.741
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(26): 6313-6325.e18, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34942099

RESUMO

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.


Assuntos
Espaço Extracelular/química , Ácido Hialurônico/farmacologia , Morfogênese , Especificidade de Órgãos , Pressão , Canais Semicirculares/citologia , Canais Semicirculares/embriologia , Actomiosina/metabolismo , Animais , Anisotropia , Comportamento Animal , Matriz Extracelular/metabolismo , Ácido Hialurônico/biossíntese , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Pressão Osmótica , Canais Semicirculares/diagnóstico por imagem , Comportamento Estereotipado , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
2.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31056282

RESUMO

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Assuntos
Forma Celular , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Linhagem Celular , Matriz Extracelular/genética , Glicocálix/genética , Cavalos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
3.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37402364

RESUMO

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiologia , Celulite (Flegmão)/metabolismo , Macrófagos/metabolismo , Matriz Extracelular
4.
J Biol Chem ; 300(7): 107449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844132

RESUMO

Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.


Assuntos
Hialuronan Sintases , Ácido Hialurônico , Hialuronoglucosaminidase , Queratinócitos , Humanos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Epiderme/metabolismo , Células Cultivadas , Moléculas de Adesão Celular , Proteínas Ligadas por GPI
5.
J Cell Mol Med ; 28(7): e18172, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494837

RESUMO

M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.


Assuntos
Osteoartrite , Sinovite , Humanos , Animais , Camundongos , Ácido Hialurônico , Sinovite/patologia , Articulação Temporomandibular/patologia , Inflamação/patologia , Osteoartrite/metabolismo , Macrófagos/metabolismo , Proteínas Quinases
6.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
7.
Glycobiology ; 34(5)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438145

RESUMO

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Camundongos , Animais , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogênese , Dermatan Sulfato
8.
J Hepatol ; 80(5): 753-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244845

RESUMO

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatias , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Baço , Fator de Crescimento Transformador beta/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
9.
Biochem Biophys Res Commun ; 702: 149627, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340655

RESUMO

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Animais , Coelhos , Ácido Hialurônico/química , Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Aterosclerose/diagnóstico por imagem
10.
BMC Med ; 22(1): 182, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685001

RESUMO

BACKGROUND: The exact mechanisms linking the gut microbiota and social behavior are still under investigation. We aimed to explore the role of the gut microbiota in shaping social behavior deficits using selectively bred mice possessing dominant (Dom) or submissive (Sub) behavior features. Sub mice exhibit asocial, depressive- and anxiety-like behaviors, as well as systemic inflammation, all of which are shaped by their impaired gut microbiota composition. METHODS: An age-dependent comparative analysis of the gut microbiota composition of Dom and Sub mice was performed using 16S rRNA sequencing, from early infancy to adulthood. Dom and Sub gastrointestinal (GI) tract anatomy, function, and immune profiling analyses were performed using histology, RT-PCR, flow cytometry, cytokine array, and dextran-FITC permeability assays. Short chain fatty acids (SCFA) levels in the colons of Dom and Sub mice were quantified using targeted metabolomics. To support our findings, adult Sub mice were orally treated with hyaluronic acid (HA) (30 mg/kg) or with the non-steroidal anti-inflammatory agent celecoxib (16 mg/kg). RESULTS: We demonstrate that from early infancy the Sub mouse gut microbiota lacks essential bacteria for immune maturation, including Lactobacillus and Bifidobacterium genera. Furthermore, from birth, Sub mice possess a thicker colon mucin layer, and from early adulthood, they exhibit shorter colonic length, altered colon integrity with increased gut permeability, reduced SCFA levels and decreased regulatory T-cells, compared to Dom mice. Therapeutic intervention in adult Sub mice treated with HA, celecoxib, or both agents, rescued Sub mice phenotypes. HA treatment reduced Sub mouse gut permeability, increased colon length, and improved mouse social behavior deficits. Treatment with celecoxib increased sociability, reduced depressive- and anxiety-like behaviors, and increased colon length, and a combined treatment resulted in similar effects as celecoxib administered as a single agent. CONCLUSIONS: Overall, our data suggest that treating colon inflammation and decreasing gut permeability can restore gut physiology and prevent social deficits later in life. These findings provide critical insights into the importance of early life gut microbiota in shaping gut immunity, functionality, and social behavior, and may be beneficial for the development of future therapeutic strategies.


Assuntos
Celecoxib , Colo , Microbioma Gastrointestinal , Ácido Hialurônico , Inflamação , Comportamento Social , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Celecoxib/farmacologia , Celecoxib/administração & dosagem , Camundongos , Colo/efeitos dos fármacos , Colo/microbiologia , Inflamação/tratamento farmacológico , Masculino , Comportamento Animal/efeitos dos fármacos , RNA Ribossômico 16S/genética
11.
Small ; 20(5): e2304836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752756

RESUMO

Biofilms offer bacteria a physical and metabolic barrier, enhancing their tolerance to external stress. Consequently, these biofilms limit the effectiveness of conventional antimicrobial treatment. Recently, quorum sensing (QS) has been linked to biofilm's stress response to thermal, oxidative, and osmotic stress. Herein, a multiple synergistic therapeutic strategy that couples quorum sensing interference assisted therapy (QSIAT)-mediated enhanced thermal therapy with bacteria-triggered immunomodulation in a single nanoplatform, is presented. First, as magnetic hyperthermia amplifier, hyaluronic acid-coated ferrite (HA@MnFe2 O4 ) attenuates the stress response of biofilm by down-regulating QS-related genes, including agrA, agrC, and hld. Next, the sensitized bacteria are eliminated with magnetic heat. QS interference and heat also destruct the biofilm, and provide channels for further penetration of nanoparticles. Moreover, triggered by bacterial hyaluronidase, the wrapped hyaluronic acid (HA) decomposes into disaccharides at the site of infection and exerts healing effect. Thus, by reversing the bacterial tissue invasion mechanism for antimicrobial purpose, tissue regeneration following pathogen invasion and thermal therapy is successfully attained. RNA-sequencing demonstrates the QS-mediated stress response impairment. In vitro and in vivo experiments reveal the excellent antibiofilm and anti-inflammatory effects of HA@MnFe2 O4 . Overall, QSIAT provides a universal enhancement strategy for amplifying the bactericidal effects of conventional therapy via stress response interference.


Assuntos
Hipertermia Induzida , Percepção de Quorum , Ácido Hialurônico , Biofilmes , Antibacterianos/farmacologia , Bactérias , Fenômenos Magnéticos
12.
J Med Virol ; 96(7): e29748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975633

RESUMO

Prostate cancer is a prevalent carcinoma among males, and conventional treatment options are often limited. Cytotoxic chemotherapy, despite its drawbacks, remains a mainstay. We propose a targeted co-delivery approach using nanoscale delivery units for Oncolytic measles virus (OMV) and vincristine (VC) to enhance treatment efficacy. The HA-coated OMV + VC-loaded TCs nanoformulation is designed for targeted oncolytic activity in prostate cancer. The CD44 expression analysis in prostate cancer cell lines indicates a significantly high expression in PC3 cells. The optimization of nanoformulations using Design of Expert (DOE) is performed, and the preparation and characterization of HA-coated OMV + VC-loaded TCs nanoformulations are detailed showing average particle size 397.2 ± 0.01 nm and polydispersity index 0.122 with zeta potential 19.7 + 0.01 mV. Results demonstrate successful encapsulation efficiency with 2.4 × 106 TCID50/Ml and sustained release of OMV and VC from the nanoformulation for up to 72 h. In vitro, assays reveal potent anticancer activity at 10 ± 0.71% cell viability in PC3 cells compared to 73 ± 0.66% in HPrEC and significant morphological changes at 90 µg/ml in dose and time-dependent manner. The co-formulation showed positive cell death 49.5 ± 0.02% at 50 µg PI/ml in PBS and 54.3% cell cycle arrest at the G2/M phase, 8.1% G0/G1 and 5.7% at S phase, with significant mitochondrial membrane potential (MMP) at 50 µg/ml, as assessed by flow cytometry (FACS). The surface-integrating ligand approach enhances the targeted delivery of the oncolytic virus and chemotherapeutic drug, presenting a potential alternative for prostate cancer treatment and suggested that co-administering VC and OMV in a nanoformulation could improve therapeutic outcomes while reducing chemotherapeutic drug doses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Próstata , Vincristina , Humanos , Masculino , Neoplasias da Próstata/terapia , Neoplasias da Próstata/tratamento farmacológico , Vincristina/farmacologia , Vincristina/administração & dosagem , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Vírus do Sarampo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Células PC-3
13.
Exp Dermatol ; 33(1): e14998, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284186

RESUMO

In photoaged human skin, type I collagen fragmentation impairs dermal extracellular matrix (ECM) integrity, resulting in collapsed/contracted fibroblasts with reduced type I procollagen synthesis. Injections of cross-linked hyaluronic acid (CL-HA) reverse these deleterious changes. To investigate the time course and effects of biochemical changes induced by injected CL-HA, particularly whether fibroblast activation leads to accumulation/deposition of dermal collagen, we injected CL-HA into photoaged skin of human participants over 60 years-old and performed biochemical/microscopic analyses of skin samples. Beginning 1 week post-injection and lasting 6-9 months, fibroblasts exhibited activation, including increased immunostaining and gene expression of markers of type I collagen synthesis, such as heat shock protein 47 and components of the transforming growth factor-ß pathway. At 1 week post-injection, multiphoton microscopy revealed elongation/stretching of fibroblasts, indicating enhanced dermal mechanical support. At 4 weeks, second-harmonic generation microscopy revealed thick collagen bundles densely packed around pools of injected CL-HA. At 12 months, accumulation of thick collagen bundles was observed and injected CL-HA remained present in substantial amounts. Thus, by occupying space in the dermal ECM, injected CL-HA rapidly and durably enhances mechanical support, stimulating fibroblast elongation and activation, which results in thick, densely packed type I collagen bundles accumulating as early as 4 weeks post-injection and continuing for at least a year. These observations indicate that early and prolonged clinical improvement following CL-HA injection results from space-filling and collagen deposition. As type I collagen has an estimated half-life of 15 years, our data provide the foundations for optimizing the timing/frequency of repeat CL-HA injections.


Assuntos
Colágeno Tipo I , Ácido Hialurônico , Humanos , Pessoa de Meia-Idade , Colágeno Tipo I/metabolismo , Ácido Hialurônico/metabolismo , Colágeno/metabolismo , Pele/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo
14.
Arch Biochem Biophys ; 759: 110098, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009271

RESUMO

Mouse transmembrane protein 2 (mTMEM2) has been identified as a hyaluronidase, which has extracellularly G8 and GG domains and PbH1 repeats; however, our previously study showed that human TMEM2 (hTMEM2) is not a catalytic hyaluronidase due to the absence of the critical amino acid residues (His248/Ala303) in the GG domain. Naked mole-rats (NMRs) accumulate abundant high-molecular weight hyaluronan (HA) in their tissues, suggesting decreased HA degradation. Therefore, we aimed to evaluate the HA-degrading activity of NMR TMEM2 (nmrTMEM2) and compare it with those of mTMEM2 and hTMEM2. The amino acid residues of nmrTMEM2 (Asn247/Val302) are similar to Asn248/Phe303 of hTMEM2, and nmrTMEM2-expressing HEK293T cells showed negligible activity. We confirmed the significance of these amino acid residues using an inactive chimeric TMEM2 with the human GG domain, which acquired catalytic activity when Asn248/Phe303 was substituted with His248/Ala303. Semi-quantitative comparison of the activities of the membrane-fractions derived from m/h/nmrTMEM2-expressing HEK293T cells revealed that at least 20- and 14-fold higher amounts of nmr/hTMEM2 were required to degrade HA to the same extent as by mTMEM2. Thus, unlike mTMEM2, nmrTMEM2 is not a physiological hyaluronidase. The inability of nmrTMEM2 to degrade HA might partially account for the high-molecular-weight HA accumulation in NMR tissues.

15.
Cell Mol Neurobiol ; 44(1): 54, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969910

RESUMO

The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.


Assuntos
Astrocitoma , Matriz Extracelular , Microambiente Tumoral , Humanos , Matriz Extracelular/metabolismo , Microambiente Tumoral/imunologia , Astrocitoma/patologia , Astrocitoma/metabolismo , Astrocitoma/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Adulto , Animais , Proteínas da Matriz Extracelular/metabolismo
16.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802835

RESUMO

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Assuntos
Injúria Renal Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tretinoína , Injúria Renal Aguda/terapia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Humanos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Ácido Hialurônico/farmacologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
17.
Mol Pharm ; 21(7): 3485-3501, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804275

RESUMO

The purpose of our research is to develop functional additives that enhance mucosal absorption of biologics, such as peptide/protein and antibody drugs, to provide their non-to-poor invasive dosage forms self-managed by patients. Our previous in vivo and in vitro studies demonstrated that the intranasal absorption of biologics in mice was significantly improved when coadministered with oligoarginines anchored chemically to hyaluronic acid via a glycine spacer, presumably through syndecan-4-mediated macropinocytosis under activation by oligoarginines. The present mouse experiments first revealed that diglycine-L-tetraarginine-linked hyaluronic acid significantly enhanced the intranasal absorption of sulpiride, which is a poor-absorptive organic compound with a low molecular weight. However, similar enhancement was not observed for levofloxacin, which has a similarly low molecular weight but is a well-absorptive organic compound, probably because its absorption was mostly dominated by passive diffusion. The subsequent monkey experiments revealed that there was no species difference in the absorption-enhancing ability of diglycine-L-tetraarginine-linked hyaluronic acid for not only organic compounds but also biologics. This was presumably because the expression levels of endocytosis-associated membrane proteins on the nasal mucosa in monkeys were almost equivalent to those in mice, and poorly membrane-permeable/membrane-impermeable drugs were mainly absorbed via syndecan-4-mediated macropinocytosis, regardless of animal species. Drug concentrations in the brain assessed in mice and monkeys and those in the cerebral spinal fluids (CSFs) assessed in monkeys indicated that drugs would be delivered from the systemic circulation to the central nervous system by crossing the blood-brain and the blood-CSF barriers under coadministration with the hyaluronic acid derivative. In line with our original hypothesis, this new set of data supported that our oligoarginine-linked hyaluronic acid would locally perform on the mucosal surface and enhance the membrane permeation of drugs under its colocalization.


Assuntos
Ácido Hialurônico , Animais , Ácido Hialurônico/química , Camundongos , Masculino , Administração Intranasal , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Macaca fascicularis , Absorção Nasal/efeitos dos fármacos , Arginina/química
18.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38546166

RESUMO

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Assuntos
Proliferação de Células , Ácido Hialurônico , Melanoma , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias Uveais , Verteporfina , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Animais , Fotoquimioterapia/métodos , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia , Camundongos , Melanoma/tratamento farmacológico , Melanoma/patologia , Humanos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Receptores de Hialuronatos/metabolismo , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Camundongos Nus , Terapia de Alvo Molecular/métodos , Camundongos Endogâmicos BALB C , Feminino
19.
Am J Obstet Gynecol ; 231(1): 36-50.35, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38191020

RESUMO

OBJECTIVE: This study aimed to determine the efficacy and safety of hyaluronic acid gel for the prevention of intrauterine adhesions and improved fertility after intrauterine surgery. DATA SOURCES: PubMed, EMBASE, Cochrane Library, Web of science, and ClinicalTrials.gov were searched up to November 1, 2023. STUDY ELIGIBILITY CRITERIA: Randomized controlled trials that reported intrauterine adhesion and fertility outcomes among women who used hyaluronic acid after intrauterine surgery. METHODS: The risk of bias was assessed using criteria of the Cochrane Handbook, and the quality of the evidence was evaluated using the Grades of Recommendation, Assessment, Development, and Evaluation system. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. A trial sequential analysis was conducted to assess the outcomes, and Stata 14 was used for sensitivity analyses and publication bias analyses. RESULTS: Data from 16 randomized controlled trials involving 2359 patients were extracted and analyzed. The analysis revealed that hyaluronic acid reduced the incidence of intrauterine adhesion (risk ratio, 0.53; 95% confidence interval, 0.42-0.67; I2=48%) and improve pregnancy rates (risk ratio, 1.24; 95% confidence interval, 1.02-1.50; I2=0%). A subgroup analysis was conducted to evaluate factors that influence the effect of hyaluronic acid on the incidence of intrauterine adhesion. It was found that a small volume of hyaluronic acid reduced the incidence of intrauterine adhesions. Hyaluronic acid exhibited a protective effect among patients who underwent various intrauterine surgeries and who had different gynecologic medical histories. The protective effect was statistically significant after a follow-up of 6 to 12 weeks. The results of the trial sequential analysis indicated that the effect of hyaluronic acid on the incidence of mild intrauterine adhesions, pregnancy rates, live birth rates, and miscarriage rates after intrauterine surgery may be inconclusive and thus further evaluation is required in the form of additional clinical trials. However, the remaining effects were found to be verifiable and did not require more clinical trials for confirmation. CONCLUSION: Hyaluronic acid can safely and effectively reduce the incidence of intrauterine adhesions and may improve fertility outcomes.


Assuntos
Ácido Hialurônico , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Doenças Uterinas , Ácido Hialurônico/uso terapêutico , Humanos , Aderências Teciduais/prevenção & controle , Aderências Teciduais/etiologia , Feminino , Gravidez , Doenças Uterinas/prevenção & controle , Doenças Uterinas/cirurgia , Géis , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Infertilidade Feminina/prevenção & controle , Fertilidade/efeitos dos fármacos , Viscossuplementos/uso terapêutico , Viscossuplementos/administração & dosagem
20.
J Sex Med ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121933

RESUMO

BACKGROUND: In recent years, there has been growing interest in the use of hyaluronic acid (HA) for the treatment of premature ejaculation (PE). The efficacy of this treatment is quite controversial. AIM: This study intended to evaluate the efficacy and safety of glans penis augmentation with HA gel for PE. METHODS: This systematic review includes randomized controlled trials (RCTs), primary clinical trials, prospective and retrospective studies, case series, and case reports. Searches in Embase, PubMed, Cochrane, Web of Knowledge, and ClinicalTrials.gov were performed blindly by 2 reviewers. OUTCOMES: Intravaginal ejaculation latency time (IELT), questionnaires about PE, glans circumference (millimeters), and adverse events. RESULTS: Thirteen studies were included in the evaluation: 4 RCTs, 8 prospective observational studies, and 1 restrospective study. The number of patients who received HA gel on the glans penis was 706. According to the results of 2 placebo-controlled RCTs, HA gel treatment significantly improved IELT at the end of the first month (mean difference [MD], 65.44 seconds). In the first month after the HA gel injection procedure, IELT increased vs before the procedure (MD, 176.18 [95% CI, 146.89-205.48]; P < .001, I2 = 83%). When the IELT values ​​were compared at 6 months after HA gel application, IELT improved vs before the procedure (MD, 143.93 [95% CI, 124.78-163.09]; P < .001, I2 = 82). The glans circumference expanded by approximately 1.5 cm after the procedure (MD, 14.82 mm [95% CI, 12.75-16.90]; P < .001, I2 = 65%). When the side effect profile of other studies was examined, side effects were observed in 91 patients after HA gel injection applied to 598 patients (15.22%). Among these side effects, the most common were pain (n = 46, 7.69%), bulla/nodule formation (n = 25, 4.18%), and ecchymosis (n = 20, 3.34%). CONCLUSION: While HA shows promise as a therapeutic option for PE, ongoing research is essential to elucidate its clinical utility, mechanisms of action, and comparative efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA