Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710148

RESUMO

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Assuntos
Carbono , Celulose , Hidrogéis , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Celulose/química , Adsorção , Hidrogéis/química , Carbono/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Pontos Quânticos/química
2.
J Sci Food Agric ; 104(10): 5712-5723, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375784

RESUMO

BACKGROUND: Fallen young rambutan fruit is an underrated agricultural waste which may contain several bioactive compounds. In this study, fallen young rambutan fruit was assessed regarding its phenolic contents and antioxidant activities. In order to expand its utilization, rambutan extract-loaded hydrogel beads were developed by a basic spherification technique using sodium alginate. The effect of ratios of polymer and extract and different calcium sources were evaluated. The recovery of bioactive compounds from the hydrogel beads was determined using in vitro gastrointestinal digestion models. RESULTS: Use of 50% (v/v) ethanol yielded rambutan extract with good chemical properties. The production of hydrogel beads using a ratio of 1:3 with calcium lactate provided the highest production yield of 122.94%. The hydrogel beads developed using the ratio of 1:3 with a combination of calcium lactate and calcium chloride showed high recovery of phenolic compounds and antioxidant activity after simulated intestinal digestion, which were greater compared to unencapsulated extract. CONCLUSION: The findings demonstrate that the ratio of wall material to rambutan extract and the calcium source influence the physical properties, chemical properties and in vitro gastrointestinal digestion stability of alginate beads. The obtained hydrogel beads may have potential for application in the food or pharmaceutical industries. © 2024 Society of Chemical Industry.


Assuntos
Alginatos , Digestão , Frutas , Trato Gastrointestinal , Extratos Vegetais , Alginatos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Trato Gastrointestinal/metabolismo , Humanos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/química , Modelos Biológicos
3.
J Sci Food Agric ; 104(10): 5834-5845, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380967

RESUMO

BACKGROUND: Hyaluronic acid liquid-core hydrogel beads (HA-LHB) is a good way for oral intake of HA. However, HA may affect the reaction-diffusion of sodium alginate (SA) and Ca2+ leading to poor mechanical properties, since HA is a polyanionic electrolyte having electrostatic effect and a certain spatial site-blocking effect. RESULTS: The mechanical properties of HA-LHB were modified from bathing solution, core solution and secondary calcium bath time. The mechanical properties varied with the SA structure and concentration in bathing solution, where SA with high G (guluronic acid) segment compounded with SA with high M (mannuronic acid) segment at a mass ratio of 7:3 with a 11 g kg-1 concentration showed the best mechanical properties. The secondary calcium bath can greatly improve the mechanical properties due to the tight network formed by bidirectional crosslinking, and 15 min reaction reached the plateau if Ca2+ is sufficient. And the mechanical properties were positively correlated with calcium lactate concentration only at <70 g kg-1 in core solution, but the diffusion of Ca2+ was hindered by the tight gel network at higher concentrations. Moreover, the mechanical properties can be maintained during heat treatment, due to the rearrangement of alginate network structure. CONCLUSION: Our results suggested that the problem of poor mechanical properties of LHB in the presence of high HA concentration can be avoided by process control, which may broaden the development of HA and popping boba market. © 2024 Society of Chemical Industry.


Assuntos
Alginatos , Temperatura Alta , Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Hidrogéis/química , Alginatos/química , Microesferas , Lactatos , Compostos de Cálcio
4.
Small ; 19(7): e2204139, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494160

RESUMO

Gene therapy using adeno-associated virus (AAV) has potential as a radical treatment modality for genetic diseases such as sensorineural deafness. To establish clinical applications, it is necessary to avoid immune response to AAV by controlled release system of AAV. Here, a near-infrared (NIR)-triggered on-demand AAV release system using alginate hydrogel microbeads with a heat transducer is proposed. By using a centrifuge-based microdroplet shooting device, the microbeads encapsulating AAV with Fe3 O4 microparticles (Fe3 O4 -MPs) as a heat transducer are fabricated. Fe3 O4 -MPs generated heat by NIR enhanced the diffusion speed of the AAV, resulting in the AAV being released from the microbeads. By irradiating the microbeads encapsulating fluorescent polystyrene nanoparticles (FP-NPs) (viral model) with NIR, the fluorescence intensity decreased only for FP-NPs with a diameter of 20 nm and not for 100 or 200 nm, confirming that this system can release virus with a diameter of several tens of nanometers. By irradiating NIR to the AAV-encapsulating microbeads with Fe3 O4 -MPs, the AAV is released on demand, and gene transfection to cells by AAV is confirmed without loss of viral activity. The NIR-triggered AAV release system proposed in this study increases the number of alternatives for the method of drug release in gene therapy.


Assuntos
Dependovirus , Hidrogéis , Dependovirus/genética , Temperatura Alta , Alginatos , Microesferas , Preparações de Ação Retardada , Terapia Genética
5.
J Environ Manage ; 341: 118079, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150175

RESUMO

The recovery of volatile fatty acids (VFAs) through anaerobic fermentation (AF) is usually restricted by the poor biodegradability of waste activated sludge (WAS). This study proposed a novel strategy, i.e. peroxymonosulfate (PMS) activated by Fe-loaded sodium alginate hydrogel beads (Fe-SA), to enhance AF performance. Experimental results demonstrated that the as-synthesized Fe-SA and PMS co-pretreatment synergistically enhanced WAS solubilization and VFAs production. The maximal VFAs yield of 2013 mg COD/L was achieved at the Fe-SA dosage of 4.0 mM/g TSS, which was 93.7% higher than that with sole PMS addition and 8.82 times higher than that of the control. Mechanistic studies elucidated that the generation of reactive radicals such as SO4•- and •OH from PMS was greatly induced by Fe-SA, which contributed to WAS disintegration and degradation of refractory compounds. Additionally, analysis of the key enzyme activities indicated that the Fe-SA could strengthen biological hydrolysis and acidogenesis of sludge during AF. Microbial analysis illustrated that Fe-SA evidently improved the abundances of fermentative microorganisms as well as functional gene expression via creating a favorable environment for microbial growth. This study demonstrated the applicable potential of Fe-SA hydrogel beads activating PMS for VFAs production and provides an important reference for developing advanced oxidation processes-based application in AF.


Assuntos
Alginatos , Esgotos , Fermentação , Anaerobiose , Hidrogéis , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis
6.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299025

RESUMO

In this study, isomerization conditions, cytotoxic activity, and stabilization of amygdalin from peach kernels were analyzed. Temperatures greater than 40 °C and pHs above 9.0 resulted in a quickly increasing isomer ratio (L-amygdalin/D-amygdalin). At acidic pHs, isomerization was significantly inhibited, even at high temperature. Ethanol inhibited isomerization; the isomer rate decreased with the ethanol concentration increasing. The growth-inhibitory effect on HepG2 cells of D-amygdalin was diminished as the isomer ratio increased, indicating that isomerization reduces the pharmacological activity of D-amygdalin. Extracting amygdalin from peach kernels by ultrasonic power at 432 W and 40 °C in 80% ethanol resulted in a 1.76% yield of amygdalin with a 0.04 isomer ratio. Hydrogel beads prepared by 2% sodium alginate successfully encapsulated the amygdalin, and its encapsulation efficiency and drug loading rate reached 85.93% and 19.21%, respectively. The thermal stability of amygdalin encapsulated in hydrogel beads was significantly improved and reached a slow-release effect in in vitro digestion. This study provides guidance for the processing and storage of amygdalin.


Assuntos
Amigdalina , Prunus persica , Isomerismo , Extratos Vegetais , Hidrogéis
7.
Environ Monit Assess ; 196(1): 54, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110596

RESUMO

Fe(III) cross-linked cellulose agar beads (Fe-CLCAB) were synthesized by sol-gel method and employed as adsorbents for the removal of phosphate ions from aqueous medium. The synthesized Fe-CLCAB was characterized by its swelling property, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and UV-Vis absorption spectroscopic analysis. Batch adsorption studies were carried out to find out the optimum conditions of phosphate uptake. The adsorption process was found to fit both Langmuir and Freundlich adsorption isotherm model, pseudo-second-order kinetic model, and Elovich kinetic model. Ninety-four percent phosphate adsorption was achieved with 500 beads at pH 5. Maximum monolayer adsorption capacity was 73.13 mg/g. A two-step elution process using sodium chloride solution was suitable for complete desorption of phosphate from Fe-CLCAB. Six cyclic adsorption-desorption tests were conducted using a 0.1 M NaCl solution as desorbing agent. The removal efficiency of regenerated Fe-CLCAB was 42% of its original value after six cycles, which validates good stability and effectiveness of the prepared hydrogel beads. Ion exchange plays a vital role during adsorption/desorption of phosphate.


Assuntos
Celulose , Poluentes Químicos da Água , Celulose/química , Hidrogéis , Ágar , Compostos Férricos , Fosfatos , Monitoramento Ambiental , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Small ; 18(33): e2203355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871504

RESUMO

Droplet impact is a ubiquitous natural phenomenon that has been widely utilized to inspire and facilitate many industrial applications. Compared to the widely studied water droplet impact onto identical liquid surfaces, the water droplet impact onto an oil layer floating on a water bath (OLW) receives far less attention and its potential application has never been exploited. Herein, the process of water droplet impact onto the OLW is investigated with emphasis on the metastable states and potential applications. It is found that the dramatic deformation of the oil-water interface caused by the water droplet impact leads to two metastable states: oil in water in oil in water (O/W/O/W) and oil in water in oil (O/W/O). Through the subsequent introduction of gelation process, the metastable states can be frozen into floating hydrogel beads with similar shape to the roly-poly toys, which are attempted in gastric retentive drug delivery and algae bloom control. Specifically, the floating hydrogel beads perform well in gastric retentive drug delivery in vitro due to their inherent slow-release properties and floating capability. In addition, the floating hydrogel beads loading photocatalysts can capture more sunshine, and exhibit high photocatalytic efficiency, which is thus responsible for efficient algae bloom control.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Água
9.
Biotechnol Lett ; 44(2): 299-319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059938

RESUMO

OBJECTIVES: Diversity in backbone polymer composition makes hydrogel-based resources open to broad spectrum of applications. Biomacromolecules which have reactive functional groups in their structural frame and can also exhibit hydrogel properties could be utilized in biomedical, pharmaceutical and drug delivery applications after some chemical modifications. RESULTS: Present study aims towards development of chitosan-based hydrogel system crosslinked together with glucosyltransferase. Hydrogel structure worked as an immobilization matrix and as a microreactor system to catalyze the cleavage of a disaccharide. Uniform chitosan hydrogel beads were prepared and dextransucrase was attached using multipoint covalent interaction approach. Strong interaction was developed by linking polymeric hydrogel with the biocatalyst utilizing glutaraldehyde as spacer arms. This bifunctional crosslinking agent performed two important tasks that includes functionalization of hydrogel beads and crosslinking of this activated matrix system with enzyme fragments. Hydrogel beads required 18.0 h crosslinking time with enzyme (6.5 mg ml-1, 189.9 DSU) under specific environment (4 °C, 100 rpm) to saturate all available ends. Enzyme fragments were observed bound with hydrogel beads when screened for surface topology indicating successful crosslinking. Steady state kinetics of crosslinked dextransucrase was studied in detail and it was revealed that it can catalyse sucrose in 30.0 min at 35 °C (pH 5.5) with an energy of activation around 15.23 kJ mol-1 with increased Vmax (785 DSU ml-1) and Km (256 mM) values as compared to soluble enzyme version. Thermal stability of the crosslinked dextransucrase also particularly improved 2.5 fold at 45 °C in comparison with soluble enzyme. Improved catalytic performance suggests that multipoint covalent immobilization protocol adapted using hydrogel system could be tailored as microreactor for catalysis of profitable macromolecules.


Assuntos
Quitosana , Hidrogéis , Quitosana/química , Enzimas Imobilizadas/metabolismo , Glutaral , Hidrogéis/química , Cinética
10.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807288

RESUMO

Polyphenolic compounds are used for treating various diseases due to their antioxidant and anticancer properties. However, utilization of hydrophobic compounds is limited due to their low bioavailability. In order to achieve a greater application of hydrophobic bioactive compounds, hydrogel beads based on biopolymers can be used as carriers for their enhanced incorporation and controlled delivery. In this study, beads based on the biopolymers-κ-carrageenan, sodium alginate and poloxamer 407 were prepared for encapsulation of curcumin. The prepared beads were characterized using IR, SEM, TGA and DSC. The curcumin encapsulation efficiency in the developed beads was 95.74 ± 2.24%. The release kinetics of the curcumin was monitored in systems that simulate the oral delivery (pH 1.2 and 7.4) of curcumin. The drug release profiles of the prepared beads with curcumin indicated that the curcumin release was significantly increased compared with the dissolution of curcumin itself. The cumulative release of curcumin from the beads was achieved within 24 h, with a final release rate of 12.07% (gastric fluid) as well as 81.93% (intestinal fluid). Both the in vitro and in vivo studies showed that new hydrogel beads based on carbohydrates and poloxamer improved curcumin's bioavailability, and they can be used as powerful carriers for the oral delivery of different hydrophobic nutraceuticals.


Assuntos
Alginatos , Curcumina , Alginatos/química , Carragenina/química , Curcumina/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Poloxâmero
11.
Biochem Soc Trans ; 49(2): 761-773, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33860783

RESUMO

Advanced microfabrication technologies and biocompatible hydrogel materials facilitate the modeling of 3D tissue microenvironment. Encapsulation of cells in hydrogel microparticles offers an excellent high-throughput platform for investigating multicellular interaction with their surrounding microenvironment. Compartmentalized microparticles support formation of various unique cellular structures. Alginate has emerged as one of the most dominant hydrogel materials for cell encapsulation owing to its cytocompatibility, ease of gelation, and biocompatibility. Alginate hydrogel provides a permeable physical boundary to the encapsulated cells and develops an easily manageable 3D cellular structure. The interior structure of alginate hydrogel can further regulate the spatiotemporal distribution of the embedded cells. This review provides a specific overview of the representative engineering approaches to generate various structures of cell-laden alginate microparticles in a uniform and reproducible manner. Capillary nozzle systems, microfluidic droplet systems, and non-chip based high-throughput microfluidic systems are highlighted for developing well-regulated cellular structure in alginate microparticles to realize potential drug screening platform and cell-based therapy. We conclude with the discussion of current limitations and future directions for realizing the translation of this technology to the clinic.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Técnicas de Cultura de Células em Três Dimensões/métodos , Engenharia Celular/métodos , Hidrogéis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Microfluídica/métodos , Tamanho da Partícula , Reprodutibilidade dos Testes
12.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681780

RESUMO

Systemic blood stream infections are a major threat to human health and are dramatically increasing worldwide. Pseudomonas aeruginosa is a WHO-alerted multi-resistant pathogen of extreme importance as a cause of sepsis. Septicemia patients have significantly increased survival chances if sepsis is diagnosed in the early stages. Affinity materials can not only represent attractive tools for specific diagnostics of pathogens in the blood but can prospectively also serve as the technical foundation of therapeutic filtration devices. Based on the recently developed aptamers directed against P. aeruginosa, we here present aptamer-functionalized beads for specific binding of this pathogen in blood samples. These aptamer capture beads (ACBs) are manufactured by crosslinking bovine serum albumin (BSA) in an emulsion and subsequent functionalization with the amino-modified aptamers on the bead surface using the thiol- and amino-reactive bispecific crosslinker PEG4-SPDP. Specific and quantitative binding of P. aeruginosa as the dedicated target of the ACBs was demonstrated in serum and blood. These initial but promising results may open new routes for the development of ACBs as a platform technology for fast and reliable diagnosis of bloodstream infections and, in the long term, blood filtration techniques in the fight against sepsis.


Assuntos
Aptâmeros de Nucleotídeos , Biblioteca Gênica , Pseudomonas aeruginosa/isolamento & purificação , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Hemólise , Humanos , Hidrogéis/química , Teste de Materiais , Microesferas , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/genética , Sepse/sangue , Sepse/diagnóstico , Sepse/microbiologia , Soro/microbiologia , Soroalbumina Bovina/química , Ovinos , Ultrafiltração/métodos
13.
Ecotoxicol Environ Saf ; 202: 110935, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800218

RESUMO

This study investigated the ability of dual crosslinked interpenetrating polymer network (IPN) blend beads (DIN:SA/PVA-beads), composed of sodium alginate (SA) and poly (vinyl alcohol) (PVA), as a base-triggered carrier for the controlled release of dinotefuran (DIN) in Spodoptera litera midgut. The blend beads were characterized for morphology, encapsulation efficiency, swelling degree, and in vitro release of the blend beads were characterized. The results revealed that the double-crosslinked gel beads had a tightly interpenetrating network structure and exhibited a satisfactory embedding effect for DIN. The maximum of the DIN loading capacity was approximately 1.01%, with a high encapsulation efficiency of 83.19%. The triggered release of DIN from the blend beads was studied in deionized water (pH 3.0-11.0) via high-performance liquid chromatography (HPLC); it was found that the release rate was higher in alkaline pH conditions than in acidic and neutral conditions. An in vivo dynamics and degradation study also demonstrated that the excellent release characteristics of DIN:SA/PVA-beads in the midgut of S. litera. This study provides a promising controlled-release form of dinotefuran that is more effective and can be used for the targeted control of pests with alkaline midgut.


Assuntos
Guanidinas/metabolismo , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Spodoptera/metabolismo , Alginatos/química , Animais , Preparações de Ação Retardada/química , Etanol , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Polímeros , Álcool de Polivinil/química
14.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314297

RESUMO

In this study, the innovative and multifunctional nanoparticles⁻hydrogel nanocomposites made with chitosan hydrogel beads and solid lipid⁻polymer hybrid nanoparticles (SLPN) were prepared through conjugation between SLPN and chitosan beads. The SLPNs were first fabricated via coating the bovine serum albumin (BSA)-emulsified solid lipid nanoparticles with oxidized dextran. The aldehyde groups of the oxidized dextran on the surface of the SLPN enabled an in situ conjugation with the chitosan beads through the Schiff base linkage. The obtained nano-on-beads composite exhibited a spherical shape with a homogeneous size distribution. The successful conjugation of SLPN on the chitosan beads was confirmed by a Fourier transform infrared spectroscopy and a scanning electron microscope. The effects of the beads dosage (50, 100, 200, and 300 beads) and the incubation duration (30, 60, 90, 120, and 150 min) on the conjugation efficiency of SLPN onto the beads were comprehensively optimized. The optimal formulations were found to be a 200 bead dosage, with 30⁻90 min incubation duration groups. The optimal formulations were then used to encapsulate thymol, an antibacterial agent, which was studied as a model compound. After encapsulation, the thymol exhibited sustained release profiles in the phosphate buffer saline. The as-prepared nanoparticles⁻hydrogel nanocomposites reported in this proof-of-concept study hold promising features as a controlled-release antibacterial approach for improving food safety.


Assuntos
Quitosana/química , Hidrogéis/química , Lipídeos/química , Nanopartículas/química , Polímeros/química , Timol/química , Composição de Medicamentos , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Int J Biol Macromol ; 264(Pt 2): 130653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458272

RESUMO

Novel hydrogel beads based on nanocomposite with outstanding antibacterial and swelling capabilities have been successfully produced as an efficient drug carrier for potential drug delivery systems in wound healing applications. The beads were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and EDX-Mapping analysis. Then, using tetracycline hydrochloride (TCH) as a model drug system, they were studied in vitro for their potential efficiency as pH and temperature dependent sustained drug delivery carriers. Moreover, they were assessed in terms of porosity, swelling degree, encapsulation efficiency, and in vitro release kinetics. Beads released drugs at their highest levels under alkaline circumstances (pH = 8) and at a temperature of 39 °C, with a cumulative TCH release of 96.2 % at 36 h and in accordance with the Weibull kinetics model (R2 = 0.98). Additionally, the disc diffusion experiment demonstrated the strong antibacterial activity of the synthesized beads and offered a feasible and cost-effective wound dressing material for treating infected wounds.


Assuntos
Nanopartículas , Tetraciclina , Tetraciclina/farmacologia , Hidrogéis/química , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Cicatrização , Liberação Controlada de Fármacos
16.
Sci Rep ; 14(1): 20404, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223248

RESUMO

The research introduces a novel method for creating drug-loaded hydrogel beads that target anti-aging, anti-oxidative, and anti-inflammatory effects, addressing the interconnected processes underlying various pathological conditions. The study focuses on the development of hydrogel beads containing anti-aging compounds, antioxidants, and anti-inflammatory drugs to effectively mitigate various processes. The synthesis, characterization and in vitro evaluations, and potential applications of these multifunctional hydrogel beads are discussed. A polymeric alginate-orange peel extract (1:1) hydrogel was synthesized for encapsulating fish oil. Beads prepared with variable fish oil concentrations (0.1, 0.3, and 0.5 ml) were characterized, showing no significant decrease in size i.e., 0.5 mm and a reduction in pore size from 23 to 12 µm. Encapsulation efficiency reached up to 98% within 2 min, with controlled release achieved upto 45 to 120 min with increasing oil concentration, indicating potential for sustained delivery. Fourier-transform infrared spectroscopy confirmed successful encapsulation by revealing peak shifting, interaction between constituents. In vitro degradation studies showed the hydrogel's biodegradability improved from 30 to 120 min, alongside anti-inflammatory, anti-oxidative, anti-collagenase and anti-elastase activities, cell proliferation rate enhanced after entrapping fish oil. In conclusion, the synthesized hydrogel beads are a promising drug delivery vehicle because they provide stable and effective oil encapsulation with controlled release for notable anti-aging and regenerative potential. Targeted delivery for inflammatory and oxidative stress-related illnesses is one set of potential uses. Further research may optimize this system for broader applications in drug delivery and tissue engineering.


Assuntos
Alginatos , Antioxidantes , Óleos de Peixe , Hidrogéis , Alginatos/química , Óleos de Peixe/química , Hidrogéis/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Humanos , Envelhecimento/efeitos dos fármacos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Microesferas , Camundongos
17.
Int J Biol Macromol ; 277(Pt 3): 134454, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102919

RESUMO

A new guar gum hydrogel beads were fabricated by dropping method from an aqueous solution of guar gum (GG) using ammonium persulphate and polyethylene glycol as initiator and crosslinker respectively, for the adsorption of chlorpyrifos (CP) from water. The semi-crystalline nature of the synthesized beads was confirmed by FESEM analysis. The TGA studies implied that the beads were thermally stable up to 600 °C. The maximum swelling ratio of 1400 gg-1 was attained at pH 9.2 and 80 min. The evidence of a strong absorption band was found in FTIR spectrum at 584 cm-1 due to -P=S of the adsorbed pesticide CP. The maximum adsorption of CP was found to be 220.97 mgg-1. The adsorption followed pseudo second-order kinetics and Langmuir adsorption isotherm with regression coefficients 0.9998 and 0.9938 which followed the chemisorption process. It is due to the hydrolysis of CP at pH 9.2 to yield 3,5,6-trichloropyridinol which in turn reacts with the carboxylic group present in GG giving -N-C=O linkage. A -ΔG indicates that the process is spontaneous and involves chemisorption which is thermodynamically and kinetically favorable and a -ΔH value (-10.37 kJ/mol) suggests that the adsorption is exothermic.


Assuntos
Clorpirifos , Galactanos , Hidrogéis , Mananas , Praguicidas , Gomas Vegetais , Poluentes Químicos da Água , Purificação da Água , Gomas Vegetais/química , Mananas/química , Galactanos/química , Clorpirifos/química , Hidrogéis/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Praguicidas/química , Praguicidas/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Água/química , Microesferas , Termodinâmica
18.
Int J Biol Macromol ; 277(Pt 4): 134380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098674

RESUMO

Red Monascus Pigment (RMP), a natural pigment, has attracted significant attention due to its suitability for food use and potential health benefits. However, preserving its stability and exploring value-added development opportunities remain crucial challenges. This study outlined the utilization of RMP, by successfully preparing hydrogel beads encapsulating RMP crude extract (RMPCE) through Ca2+-mediated chitosan (CS)/sodium alginate (SA) encapsulation (CO-RMPHB). A systematic investigation into the fabrication and stability parameters, including preparation conditions, temperature, monochromatic light and storage time, was undertaken. Through optimization (SA: 2.50 wt%; CaCl2: 6.00 wt%; CS: 0.50 wt%), maximum encapsulation efficiency of 73.54 ± 2.16 % was achieved. The maximum swelling degree of blank hydrogel beads (BHB) in simulated gastric solution (pH = 1.2, 1.50 ± 0.97 %) was significantly lower than in simulated intestinal solution (pH = 7.0, 28.05 ± 1.43 %), confirming their sensitivity to pH changes. Additionally, the CO-RMPHB (66.08 %, 1000 µL) exhibited superior DPPH radical scavenging capability compared to individual RMPCE or BHB. Furthermore, analysis of the release kinetics based on zero-order, first-order, Higuchi, and Ritger-Peppas models revealed that RMPCE release from CO-RMPHB under in vitro digestion models followed non-Fickian diffusion. This discovery effectively addresses the challenges of the stability and controlled release of RMP, expanding its applications in the food and pharmaceutical industries.


Assuntos
Alginatos , Cálcio , Quitosana , Hidrogéis , Monascus , Quitosana/química , Alginatos/química , Hidrogéis/química , Monascus/química , Monascus/metabolismo , Cinética , Cálcio/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Pigmentos Biológicos/química , Portadores de Fármacos/química , Microesferas
19.
Nutrients ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39203862

RESUMO

Carotenoids, the natural pigments that confer the bright orange color of sea buckthorn berries, are also associated with several health benefits, such as antioxidant activity and skin and eye protection. Due to their lipophilic nature and localization, carotenoids are largely retained in the sea buckthorn pomace (SBP) resulting from juice production. Carotenoids from SBP (70.03 mg/100 g DW), extracted and characterized by HPLC-PDA, contained zeaxanthin (free and esterified) and beta-carotene as major compounds. The SBP carotenoids-enriched sunflower oil was further encapsulated in Ca-alginate hydrogel beads (98.4% encapsulation efficiency) using ionotropic gelation. The hydrogel beads were characterized by confocal laser scanning microscopy and scanning electron microscopy. Fairly good stability (>64%) of the encapsulated carotenoids in the alginate hydrogel beads during storage (30 days, 4 °C and 25 °C) was found, with zeaxanthin esters being the most stable compounds, for all the experimental conditions. The bioaccessibility of the total carotenoids (INFOGEST protocol) was 42.1 ± 4.6% from hydrated, and, respectively, 40.8 ± 4% from dehydrated SBP alginate hydrogel beads. The addition of yogurt to the dehydrated hydrogel beads had a positive effect on the bioaccessibility of free and esterified zeaxanthin, but not on that of the carotenes. In conclusion, SBP is a valuable source of carotenoids which can be protected by encapsulation in alginate hydrogel beads, thus still retaining a good bioaccessibility.


Assuntos
Alginatos , Disponibilidade Biológica , Carotenoides , Hippophae , Hidrogéis , Alginatos/química , Hippophae/química , Hidrogéis/química , Carotenoides/farmacocinética , Carotenoides/administração & dosagem , Carotenoides/análise , Zeaxantinas/química , Iogurte/análise , Óleo de Girassol/química , Humanos , beta Caroteno/química , beta Caroteno/farmacocinética , beta Caroteno/administração & dosagem , Frutas/química
20.
Int J Biol Macromol ; : 135879, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322154

RESUMO

The extensive use of tetracycline (TC) for disease control and the residuals in wastewater has resulted in the spread and accumulation of antibiotic resistance genes, posing a severe threat to the human health and environmental safety. To solve this problem, a series of double-network hydrogel beads based on sodium alginate and polyvinyl alcohol were constructed with the introduction of various surfactants to modulate the morphology. The results showed that the introduction of surfactants can modulate the surface morphology and internal structure, which can also regulate the adsorption ability of the hydrogel beads. The SDS-B beads with SDS as surfactant exhibited highest adsorption efficiency for removal of TC with a maximum adsorption capacity up to 121.6 mg/g, which possessed a resistance to various cations and humic acid. The adsorption mechanism revealed that the superior adsorption performance of the hydrogel beads was primarily attributed to hydrogen bonding, electrostatic attraction, and π-π EDA interactions. Adsorption kinetics demonstrated that the pseudo-second-order model fitted the adsorption process well and adsorption isotherm showed the adsorption of TC occurred through both chemical and physical interactions. Moreover, the adsorption efficiency remained approximately 87.5 % after three adsorption-desorption cycles, which may have potential application and practical value in TC adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA