Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Appl Environ Microbiol ; 89(12): e0129123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009977

RESUMO

IMPORTANCE: Nitrification, the microbial conversion of ammonia to nitrate via nitrite, plays a pivotal role in the global nitrogen cycle. However, the excessive use of ammonium-based fertilizers in agriculture has disrupted this cycle, leading to groundwater pollution and greenhouse gas emissions. In this study, we have demonstrated the inhibitory effects of plant-derived juglone and related 1,4-naphthoquinones on the nitrification process in Nitrosomonas europaea. Notably, the inhibition mechanism is elucidated in which 1,4-naphthoquinones interact with hydroxylamine oxidoreductase, disrupting the electron transfer to cytochrome c554, a physiological electron acceptor. These findings support the notion that phytochemicals can impede nitrification by interfering with the essential electron transfer process in ammonia oxidation. The findings presented in this article offer valuable insights for the development of strategies aimed at the management of nitrification, reduction of fertilizer utilization, and mitigation of greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Naftoquinonas , Citocromos c/metabolismo , Amônia/metabolismo , Elétrons , Naftoquinonas/farmacologia , Fertilizantes , Oxirredução , Hidroxilamina/farmacologia , Nitrificação
2.
Proc Natl Acad Sci U S A ; 117(39): 24459-24463, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913059

RESUMO

Aerobic and nitrite-dependent methanotrophs make a living from oxidizing methane via methanol to carbon dioxide. In addition, these microorganisms cometabolize ammonia due to its structural similarities to methane. The first step in both of these processes is catalyzed by methane monooxygenase, which converts methane or ammonia into methanol or hydroxylamine, respectively. Methanotrophs use methanol for energy conservation, whereas toxic hydroxylamine is a potent inhibitor that needs to be rapidly removed. It is suggested that many methanotrophs encode a hydroxylamine oxidoreductase (mHAO) in their genome to remove hydroxylamine, although biochemical evidence for this is lacking. HAOs also play a crucial role in the metabolism of aerobic and anaerobic ammonia oxidizers by converting hydroxylamine to nitric oxide (NO). Here, we purified an HAO from the thermophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV and characterized its kinetic properties. This mHAO possesses the characteristic P460 chromophore and is active up to at least 80 °C. It catalyzes the rapid oxidation of hydroxylamine to NO. In methanotrophs, mHAO efficiently removes hydroxylamine, which severely inhibits calcium-dependent, and as we show here, lanthanide-dependent methanol dehydrogenases, which are more prevalent in the environment. Our results indicate that mHAO allows methanotrophs to thrive under high ammonia concentrations in natural and engineered ecosystems, such as those observed in rice paddy fields, landfills, or volcanic mud pots, by preventing the accumulation of inhibitory hydroxylamine. Under oxic conditions, methanotrophs mainly oxidize ammonia to nitrite, whereas in hypoxic and anoxic environments reduction of both ammonia-derived nitrite and NO could lead to nitrous oxide (N2O) production.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Metano/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Verrucomicrobia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Verrucomicrobia/genética , Verrucomicrobia/metabolismo
3.
J Biol Chem ; 296: 100476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33652023

RESUMO

The hydroxylamine oxidoreductase (HAO) family consists of octaheme proteins that harbor seven bis-His ligated electron-transferring hemes and one 5-coordinate catalytic heme with His axial ligation. Oxidative HAOs have a homotrimeric configuration with the monomers covalently attached to each other via a unique double cross-link between a Tyr residue and the catalytic heme moiety of an adjacent subunit. This cross-linked active site heme, termed the P460 cofactor, has been hypothesized to modulate enzyme reactivity toward oxidative catalysis. Conversely, the absence of this cross-link is predicted to favor reductive catalysis. However, this prediction has not been directly tested. In this study, an HAO homolog that lacks the heme-Tyr cross-link (HAOr) was purified to homogeneity from the nitrite-dependent anaerobic ammonium-oxidizing (anammox) bacterium Kuenenia stuttgartiensis, and its catalytic and spectroscopic properties were assessed. We show that HAOr reduced nitrite to nitric oxide and also reduced nitric oxide and hydroxylamine as nonphysiological substrates. In contrast, HAOr was not able to oxidize hydroxylamine or hydrazine supporting the notion that cross-link-deficient HAO enzymes are reductases. Compared with oxidative HAOs, we found that HAOr harbors an active site heme with a higher (at least 80 mV) midpoint potential and a much lower degree of porphyrin ruffling. Based on the physiology of anammox bacteria and our results, we propose that HAOr reduces nitrite to nitric oxide in vivo, providing anammox bacteria with NO, which they use to activate ammonium in the absence of oxygen.


Assuntos
Oxirredutases/química , Oxirredutases/metabolismo , Planctomycetales/metabolismo , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Catálise , Domínio Catalítico , Transporte de Elétrons/fisiologia , Heme/metabolismo , Hidrazinas/química , Hidroxilamina/química , Hidroxilaminas/química , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução , Tirosina/química , Tirosina/metabolismo
4.
Angew Chem Int Ed Engl ; 59(6): 2182-2202, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31116902

RESUMO

Approximately two percent of the world's energy is consumed in the production of ammonia from hydrogen and nitrogen gas. Ammonia is used as a fertilizer ingredient for agriculture and distributed in the environment on an enormous scale to promote crop growth in intensive farming. Only 30-50 % of the nitrogen applied is assimilated by crop plants; the remaining 50-70 % goes into biological processes such as nitrification by microbial metabolism in the soil. This leads to an imbalance in the global nitrogen cycle and higher nitrous oxide emissions (a potent and significant greenhouse gas) as well as contamination of ground and surface waters by nitrate from the nitrogen-fertilized farmland. This Review gives a critical overview of the current knowledge of soil microbes involved in the chemistry of ammonia nitrification, the structures and mechanisms of the enzymes involved, and phytochemicals capable of inhibiting ammonia nitrification.


Assuntos
Compostos de Amônio/metabolismo , Microbiologia do Solo , Solo/química , Nitratos/metabolismo , Nitrobacter/metabolismo , Ciclo do Nitrogênio , Óxido Nitroso/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Plantas/metabolismo
5.
Biotechnol Appl Biochem ; 66(4): 494-501, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30905079

RESUMO

Hydroxylamine oxidoreductase (HAO) is a key enzyme involved in ammonium removal pathway. To further study the enzyme, HAO was purified from heterotrophic nitrifier Acinetobacter sp. Y1 and its property was investigated. Results of single-factor experiments showed that the optimal carbon source, nitrogen source, and C/N ratio were trisodium citrate, ammonium sulfate, and 14, respectively, with incubation time of 16 H. DEAE SefinoseTM FF anion-exchange chromatography was used to purify HAO, followed by SefinoseTM CL-6B gel filtration chromatography. SDS-PAGE revealed that a 47 kDa enzyme was purified successfully, with a purification fold of 7.32 and a recovery rate of 19.40%. The optimized enzyme activity of purified HAO was tested at pH 8.0 and 30 °C. The results showed that the activity was increased by 43.78% and 25.64% in the presence of 1 mM Fe2+ and Fe3+ , respectively. HAO activity was increased with the increase of Na+ and K+ , Mn2+ , Zn2+ , Cu2+ , Ca2+ , Ba2+ inhibited the HAO activity at three concentrations. In addition, HAO activity was activated by ethylenediaminetetraacetic acid at 0.4 mM, and a negative effect arose as the dose increased. The purified enzyme from Y1 is different from other reported HAOs. Further study should be conducted to investigate the enzyme.


Assuntos
Acinetobacter/enzimologia , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Ácido Edético/farmacologia , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Oxirredutases/antagonistas & inibidores , Temperatura
6.
Bioprocess Biosyst Eng ; 42(12): 1983-1992, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31420725

RESUMO

N2O production from NH2OH oxidation involved in a heterotrophic nitrifier Alcaligenes faecalis strain NR was studied. 15N-labeling experiments showed that biological NH2OH consumption by strain NR played a dominant role in N2O production, although chemical reaction between NH2OH and O2 indeed existed. Hydroxylamine oxidoreductase (HAO) from strain NR was partially purified by (NH4)2SO4 fractionation and DEAE Cartridge chromatography. The maximum activity of HAO was 9.60 mU with a specific activity of 92.04 mU/(mg protein) when K3Fe(CN)6 was used as an electron acceptor. The addition of Ca2+ promoted the HAO activity, while the presence of Mn2+ inhibited the enzyme activity. The optimal temperature and pH for HAO activity were 30 °C and 8. Analysis of enzyme-catalyzed products demonstrated that NH2OH oxidation catalyzed by HAO from strain NR played significant role in the production of N2O.


Assuntos
Alcaligenes faecalis/enzimologia , Microbiologia Industrial , Óxido Nitroso/metabolismo , Oxirredutases/biossíntese , Aerobiose , Cálcio/química , Catálise , Cromatografia , Meios de Cultura , Elétrons , Concentração de Íons de Hidrogênio , Hidroxilaminas , Íons , Manganês/química , Espectrometria de Massas , Isótopos de Nitrogênio , Oxirredução , Temperatura
7.
Biochem Biophys Res Commun ; 476(3): 127-33, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27173879

RESUMO

Ammonia-oxidizing bacteria (AOB), ubiquitous chemoautotrophic bacteria, convert ammonia (NH3) to nitrite (NO2(-)) via hydroxylamine as energy source. Excessive growth of AOB, enhanced by applying large amounts of ammonium-fertilizer to the farmland, leads to nitrogen leaching and nitrous oxide gas emission. To suppress these unfavorable phenomena, nitrification inhibitors, AOB specific bactericides, are widely used in fertilized farmland. However, new nitrification inhibitors are desired because of toxicity and weak-effects of currently used inhibitors. Toward development of novel nitrification inhibitors that target hydroxylamine oxidoreductase (HAO), a key enzyme of nitrification in AOB, we established inhibitor evaluation systems that include simplified HAO purification procedure and high-throughput HAO activity assays for the purified enzymes and for the live AOB cells. The new assay systems allowed us to observe distinct inhibitory responses of HAOs from beta-proteobacterial AOB (ßAOB) Nitrosomonas europaea (NeHAO) and gamma-proteobacterial AOB (γAOB) Nitrosococcus oceani (NoHAO) against phenylhydrazine, a well-known suicide inhibitor for NeHAO. Consistently, the live cells of N. europaea, Nitrosomonas sp. JPCCT2 and Nitrosospira multiformis of ßAOB displayed higher responses to phenylhydrazine than those of γAOB N. oceani. Our homology modeling studies suggest that different inhibitory responses of ßAOB and γAOB are originated from different local environments around the substrate-binding sites of HAOs in these two classes of bacteria due to substitutions of two residues. The results reported herein strongly recommend inhibitor screenings against both NeHAO of ßAOB and NoHAO of γAOB to develop HAO-targeting nitrification inhibitors with wide anti-AOB spectra.


Assuntos
Compostos de Amônio/metabolismo , Ensaios Enzimáticos/métodos , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Agroquímicos/metabolismo , Sequência de Aminoácidos , Inibidores Enzimáticos/metabolismo , Gammaproteobacteria/química , Modelos Moleculares , Nitrificação/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Oxirredutases/química , Fenil-Hidrazinas/metabolismo
8.
J Basic Microbiol ; 54(4): 261-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23553651

RESUMO

Nitrosomonas genus belongs to beta-subclass of Proteobacteria and encompasses closely related species. Sequence independent techniques like single strand confirmation polymorphism (SSCP) was attempted in the present study to resolve AOB using ammonia monooxygenase (amoA) and hydroxylamine oxidoreductase (hao) gene fragments, unique to AOB. Variation in hydroxylamine oxidoreductase (HAO) enzyme zymogram of isolates observed in the study was also explored as an additional sequence independent method to substantiate the observations. Nitrosomonas europaea (standard strain) and 12 isolates, obtained by enriching environmental samples, were differentiated into six and four groups by SSCP analyses of amoA and hao gene fragments, respectively, whereas they could be resolved into six distinct groups through activity staining of HAO enzyme. amoA gene fragment was therefore found to be better than hao gene fragment in resolving the studied AOB based on richness and evenness with Simpson's index of diversity - 0.85. However, the ensembled use of these molecular methods (SSCP of amoA and hao gene fragments) and HAO enzyme zymogram in fingerprinting AOB provide better resolution and evenness, contributing significantly in AOB diversity studies. Grouping of AOB isolates by hao gene SSCP analysis followed almost the same pattern as that by 16S rRNA gene based sequence analysis, hence it is suitable as a phylogenetic marker.


Assuntos
Nitrosomonas/enzimologia , Oxirredutases/metabolismo , Sequência de Bases , Biomarcadores/análise , Marcadores Genéticos , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , Análise de Sequência/métodos , Esgotos/microbiologia , Microbiologia do Solo
9.
Ann Bot ; 112(2): 297-316, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23118123

RESUMO

BACKGROUND: Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. SCOPE: In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the BNI function in plants could potentially have a large influence on biogeochemical cycling and closure of the N loop in crop-livestock systems.


Assuntos
Lactonas/farmacologia , Nitrificação/efeitos dos fármacos , Nitrogênio/metabolismo , Nitrosomonas/metabolismo , Raízes de Plantas/metabolismo , Agricultura , Brachiaria/química , Brachiaria/metabolismo , Produtos Agrícolas , Ecossistema , Fertilizantes , Lactonas/química , Raízes de Plantas/química , Compostos de Amônio Quaternário/metabolismo , Solo , Sorghum/química , Sorghum/metabolismo , Triticum/química , Triticum/metabolismo
10.
mSystems ; 7(5): e0040322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154142

RESUMO

A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.


Assuntos
Methylocystaceae , Oxirredução , Áreas Alagadas , Metano/metabolismo , Aminoácidos/metabolismo
11.
Sci Total Environ ; 717: 137030, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062250

RESUMO

Anammox bacteria play an important role in the global nitrogen cycle, but research on anammoxosome structure is still in its initial stages. In particular, the anammox bacteria genome contains nanocompartments gene loci. However, the function and structure of the nanocompartments in anammox bacteria is poorly understood. We apply genetic engineering to demonstrate the self-assembled nanocompartments of anammox bacteria. The encapsulin shell protein (cEnc) and cargo protein hydroxylamine oxidoreductase (HAO) can self-assemble to form regular nanocompartments (about 128 nm in diameter) in vitro. Cell growth curve tests show that nanocompartments help model bacteria resist hydroxylamine (NH2OH) stress. Batch test results and transcriptional data show that cEnc and HAO are highly expressed in response to the negative effects of NH2OH on anammox efficiency, predicting a potential role of nanocompartments in helping anammox bacteria resist NH2OH stress. These findings improve our understanding of the mechanisms by which anammox bacteria respond to harmful environmental metabolites.


Assuntos
Bactérias , Hidroxilamina/farmacologia , Anaerobiose , Proteínas de Bactérias , Hidroxilaminas , Oxirredução , Estresse Fisiológico
12.
Acta Crystallogr D Struct Biol ; 75(Pt 3): 333-341, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950404

RESUMO

The hydroxylamine oxidoreductase/hydrazine dehydrogenase (HAO/HDH) protein family constitutes an important group of octaheme cytochromes c (OCCs). The majority of these proteins form homotrimers, with their subunits being covalently attached to each other via a rare cross-link between the catalytic heme moiety and a conserved tyrosine residue in an adjacent subunit. This covalent cross-link has been proposed to modulate the active-site heme towards oxidative catalysis by distorting the heme plane. In this study, the crystal structure of a stable complex of an HAO homologue (KsHAOr) with its diheme cytochrome c redox partner (KsDH) from the anammox bacterium Kuenenia stuttgartiensis was determined. KsHAOr lacks the tyrosine cross-link and is therefore tuned to reductive catalysis. The molecular model of the KsHAOr-KsDH complex at 2.6 Šresolution shows a heterododecameric (α6ß6) assembly, which was also shown to be the oligomeric state in solution by analytical ultracentrifugation and multi-angle static light scattering. The 60-heme-containing protein complex reveals a unique extended electron transfer pathway and provides deeper insights into catalysis and electron transfer in reductive OCCs.


Assuntos
Proteínas de Bactérias/química , Transporte de Elétrons , Bactérias Anaeróbias Gram-Negativas/enzimologia , Oxirredutases/química , Bactérias/metabolismo , Modelos Moleculares
13.
J Biosci Bioeng ; 118(6): 616-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24996970

RESUMO

The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria.


Assuntos
Bactérias/enzimologia , Biocatálise , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Bactérias/metabolismo , Benzil Viologênio/metabolismo , Transporte de Elétrons , Hidrazinas/metabolismo , Hidrazinas/farmacologia , Hidroxilamina/metabolismo , Cinética , Nitrosomonas/enzimologia , Nitrosomonas/metabolismo , Oxirredução
14.
Front Microbiol ; 4: 180, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23847604

RESUMO

The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM) pathway. Instead of a classical ammonia-forming nitrite reductase that performs a 6 electron-transfer process, the pathway is thought to employ two catalytic redox modules operating in sequence: the reverse-HURM reducing nitrite to hydroxylamine followed by a hydroxylamine reductase that converts hydroxylamine to ammonium. Experiments were performed on Nautilia profundicola strain AmH, whose genome sequence led to the reverse-HURM pathway proposal. N. profundicola produced ammonium from nitrate, which was assimilated into biomass. Furthermore, genes encoding the catalysts of the reverse-HURM pathway were preferentially expressed during growth of N. profundicola on nitrate as an electron acceptor relative to cultures grown on polysulfide as an electron acceptor. Finally, nitrate-grown cells of N. profundicola were able to rapidly and stoichiometrically convert high concentrations of hydroxylamine to ammonium in resting cell assays. These experiments are consistent with the reverse-HURM pathway and a free hydroxylamine intermediate, but could not definitively exclude direct nitrite reduction to ammonium by the reverse-HURM with hydroxylamine as an off-pathway product. N. profundicola and related organisms are models for a new pathway of nitrate ammonification that may have global impact due to the wide distribution of these organisms in hypoxic environments and symbiotic or pathogenic associations with animal hosts.

15.
Front Microbiol ; 3: 10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319517

RESUMO

Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO) is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB). Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homolog in known ammonia-oxidizing archaea (AOA). In this study, the effects of three organohydrazines on activity, abundance, and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 µmol g(-1) dry weight soil completely suppressed the activity of soil nitrification. Denaturing gradient gel electrophoresis fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA) clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA