Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
NMR Biomed ; 37(3): e5074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054254

RESUMO

INTRODUCTION: The healthy heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13 C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13 C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. METHODS: Good manufacturing practice [2-13 C]pyruvic acid was polarized in a 5 T polarizer for 2.5-3 h. Following dissolution, quality control parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5 cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3 s intervals on a 3 T clinical MRI scanner. RESULTS: The study protocol, which included HP substrate injection, MR scanning, and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13 C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13 C]lactate, TCA-associated metabolite [5-13 C]glutamate, and [1-13 C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13 C-labeling of lactate, glutamate, and acetylcarnitine from 13 C-pyruvate increased by an average of 39.3%, 29.5%, and 114% respectively in the three subjects, which could result from increases in lactate dehydrogenase, pyruvate dehydrogenase, and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). CONCLUSIONS: HP [2-13 C]pyruvate imaging is safe and permits noninvasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13 C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.


Assuntos
Miocárdio , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Miocárdio/metabolismo , Glucose/metabolismo , Acetilcarnitina/metabolismo , Miócitos Cardíacos , Ácido Glutâmico/metabolismo , Lactatos/metabolismo , Isótopos de Carbono/metabolismo
2.
Magn Reson Med ; 87(4): 1673-1687, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34775639

RESUMO

PURPOSE: The goal of this study was to combine a specialized acquisition method with a new quantification pipeline to accurately and efficiently probe the metabolism of hyperpolarized 13 C-labeled compounds in vivo. In this study, we tested our approach on [2-13 C]pyruvate and [1-13 C]α-ketoglutarate data in rat orthotopic brain tumor models at 3T. METHODS: We used a multiband metabolite-specific radiofrequency (RF) excitation in combination with a variable flip angle scheme to minimize substrate polarization loss and measure fast metabolic processes. We then applied spectral-temporal denoising using singular value decomposition to enhance spectral quality. This was combined with LCModel-based automatic 13 C spectral fitting and flip angle correction to separate overlapping signals and rapidly quantify the different metabolites. RESULTS: Denoising improved the metabolite signal-to-noise ratio (SNR) by approximately 5. It also improved the accuracy of metabolite quantification as evidenced by a significant reduction of the Cramer Rao lower bounds. Furthermore, the use of the automated and user-independent LCModel-based quantification approach could be performed rapidly, with the kinetic quantification of eight metabolite peaks in a 12-spectrum array achieved in less than 1 minute. CONCLUSION: The specialized acquisition method combined with denoising and a new quantification pipeline using LCModel for the first time for hyperpolarized 13 C data enhanced our ability to monitor the metabolism of [2-13 C]pyruvate and [1-13 C]α-ketoglutarate in rat orthotopic brain tumor models in vivo. This approach could be broadly applicable to other hyperpolarized agents both preclinically and in the clinical setting.


Assuntos
Neoplasias Encefálicas , Ácido Pirúvico , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Isótopos de Carbono , Cinética , Espectroscopia de Ressonância Magnética , Ácido Pirúvico/metabolismo , Ratos , Razão Sinal-Ruído
3.
NMR Biomed ; 34(3): e4447, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314422

RESUMO

Hyperpolarized [1-13 C] pyruvate can be used to examine the metabolic state of cancer cells, highlighting a key metabolic characteristic of cancer: the upregulated metabolic flux to lactate, even in the presence of oxygen (Warburg effect). Thus, the rate constant of 13 C exchange of pyruvate to lactate, kPL , can serve as a metabolic biomarker of cancer presence, aggressiveness and therapy response. Established in vitro hyperpolarized experiments dissolve the probe for each cell sample independently, an inefficient process that consumes excessive time and resources. Expanding on our previous development of a microcoil with greatly increased detection sensitivity (103 -fold) compared with traditional in vitro methods, we present a novel microcoil equipped with a 10-µL vertical reservoir and an experimental protocol utilizing deuterated dissolution buffer to measure metabolic flux in multiple mass-limited cell suspension samples using a single dissolution. This method increases efficiency and potentially reduces the methodological variability associated with hyperpolarized experiments. This technique was used to measure pyruvate-to-lactate flux in melanoma cells to assess BRAF-inhibition treatment response. There was a significant reduction of kPL in BRAFV600E cells following 24 and 48 hours of treatment with 2 µM vemurafenib (P ≤ .05). This agrees with significant changes observed in the pool sizes of extracellular lactate (P ≤ .05) and glucose (P ≤ .001) following 6 and 48 hours of treatment, respectively, and a significant reduction in cell proliferation following 72 hours of treatment (P ≤ .01). BRAF inhibition had no significant effect on the metabolic flux of BRAFWT cells. These data demonstrate a 6-8-fold increase in efficiency for the measurement of kPL in cell suspension samples compared with traditional hyperpolarized in vitro methods.


Assuntos
Ácido Láctico/metabolismo , Melanoma/metabolismo , Análise do Fluxo Metabólico , Ácido Pirúvico/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Resultado do Tratamento
4.
Chemphyschem ; 22(10): 915-923, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33590933

RESUMO

Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Fumaratos/metabolismo , Imageamento por Ressonância Magnética , Alcinos/química , Isótopos de Carbono , Teoria da Densidade Funcional , Ácidos Graxos Insaturados/química , Fumaratos/química , Hidrogenação
5.
NMR Biomed ; 32(11): e4164, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437326

RESUMO

Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inflamação/diagnóstico por imagem , Inflamação/diagnóstico , Neurotoxinas/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inflamação/patologia , Ácido Láctico/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Ácido Pirúvico/metabolismo
6.
NMR Biomed ; 31(12): e4012, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30276897

RESUMO

Carbon-13 NMR spectroscopy (13 C MRS) offers the unique capability to measure brain metabolic rates in vivo. Hyperpolarized 13 C reduces the time required to assess brain metabolism from hours to minutes when compared with conventional 13 C MRS. This study investigates metabolism of hyperpolarized [1-13 C]pyruvate and [2-13 C]pyruvate in the rat brain in vivo under various anesthetics: pentobarbital, isoflurane, α-chloralose, and morphine. The apparent metabolic rate from pyruvate to lactate modeled using time courses obtained after injection of hyperpolarized [1-13 C]pyruvate was significantly greater for isoflurane than for all other anesthetic conditions, and significantly greater for morphine than for α-chloralose. The apparent metabolic rate from pyruvate to bicarbonate was significantly greater for morphine than for all other anesthetic conditions, and significantly lower for pentobarbital than for α-chloralose. Results show that relative TCA cycle rates determined from hyperpolarized 13 C data are consistent with rates previously measured using conventional 13 C MRS under similar anesthetic conditions, and that using morphine for sedation greatly improves detection of downstream metabolic products compared with other anesthetics.


Assuntos
Anestesia , Encéfalo/metabolismo , Isótopos de Carbono/química , Ácido Pirúvico/metabolismo , Animais , Cinética , Masculino , Ratos Sprague-Dawley
7.
Liver Int ; 38(6): 1117-1127, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345050

RESUMO

BACKGROUND & AIMS: Despite a number of studies addressing the pathophysiology of hepatic IRI, a gold standard test for early diagnosis and evaluation of IRI remains elusive. This study investigated the metabolic alterations in a rat model of hepatic IRI using the in vivo hyperpolarized ¹³C MRS and metabolic imaging. METHODS: Hyperpolarized 13 C MRS with IVIM-DWI was performed on the liver of 7 sham-operated control rats and 7 rats before and after hepatic IRI. RESULTS: The hepatic IRI-induced rats showed significantly higher ratios of [1-13 C] alanine/pyruvate, [1-13 C] alanine/tC, [1-13 C] lactate/pyruvate and [1-13 C] lactate/tC compared with both sham-operated controls and rats before IRI, whereas [1-13 C] pyruvate/tC ratio was decreased in IRI-induced rats. In IVIM-DWI study, apparent diffusion coefficient (ADC), f and D values in rats after hepatic IRI were significantly lower than those of rats before IRI and sham-operated controls. The levels of [1-13 C] alanine and [1-13 C] lactate were negatively correlated with ADC, f and D values, whereas the level of [1-13 C] pyruvate was positively correlated with these values. CONCLUSIONS: The levels of [1-13 C] alanine, [1-13 C] lactate and [1-13 C] pyruvate in conjunction with IVIM-DWI will be helpful to evaluate the hepatic IRI as well as these findings can be useful in understanding the biochemical mechanism associated with hepatic damage.


Assuntos
Imagem de Difusão por Ressonância Magnética , Hepatopatias/diagnóstico por imagem , Hepatopatias/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/metabolismo , Animais , Peso Corporal , Isótopos de Carbono/farmacocinética , Modelos Animais de Doenças , Ácido Láctico/farmacocinética , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Magn Reson Med ; 73(1): 51-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24435823

RESUMO

PURPOSE: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized (13)C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. METHODS: Tumor growth was monitored by anatomical MRI by measuring tumor volumes. Dynamic MRS of hyperpolarized (13)C was used to measure an "apparent" pyruvate-to-lactate rate constant (kp) of lactate dehydrogenase (LDH) in vivo. Further, ex vivo pathology and in vitro LDH initial reaction velocity were evaluated. RESULTS: Tamoxifen significantly halted the tumor growth measured as tumor volume by MRI. In the untreated animals, kp correlated with tumor growth. The kP was somewhat but not significantly lower in the treated group. Studies in vitro confirmed the effects of tamoxifen on tumor growth, and here the LDH reaction velocity was reduced significantly in the treated group. CONCLUSION: These hyperpolarized (13)C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Ácido Pirúvico/farmacocinética , Tamoxifeno/administração & dosagem , Animais , Antineoplásicos Hormonais/administração & dosagem , Progressão da Doença , Monitoramento de Medicamentos/métodos , Feminino , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Ácido Pirúvico/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
9.
Neurooncol Adv ; 5(1): vdad143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024238

RESUMO

Background: Mutant isocitrate dehydrogenase (IDHmut) catalyzes 2-hydroxyglutarate (2HG) production and is considered a therapeutic target for IDHmut tumors. However, response is mostly associated with inhibition of tumor growth. Response assessment via anatomic imaging is therefore challenging. Our goal was to directly detect IDHmut inhibition using a new hyperpolarized (HP) 13C magnetic resonance spectroscopy-based approach to noninvasively assess α-ketoglutarate (αKG) metabolism to 2HG and glutamate. Methods: We studied IDHmut-expressing normal human astrocyte (NHAIDH1mut) cells and rats with BT257 tumors, and assessed response to the IDHmut inhibitor BAY-1436032 (n ≥ 4). We developed a new 13C Echo Planar Spectroscopic Imaging sequence with an optimized RF pulse to monitor the fate of HP [1-13C]αKG and [5-12C,1-13C]αKG with a 2.5 × 2.5 × 8 mm3 spatial resolution. Results: Cell studies confirmed that BAY-1436032-treatment leads to a drop in HP 2HG and an increase in HP glutamate detectable with both HP substrates. Data using HP [5-12C,1-13C]αKG also demonstrated that its conversion to 2HG is detectable without the proximal 1.1% natural abundance [5-13C]αKG signal. In vivo studies showed that glutamate is produced in normal brains but no 2HG is detectable. In tumor-bearing rats, we detected the production of both 2HG and glutamate, and BAY-1436032-treatment led to a drop in 2HG and an increase in glutamate. Using HP [5-12C,1-13C]αKG we detected metabolism with an signal-to-noise ratio of 23 for 2HG and 17 for glutamate. Conclusions: Our findings point to the clinical potential of HP αKG, which recently received FDA investigational new drug approval for research, for noninvasive localized imaging of IDHmut status.

10.
J Magn Reson ; 343: 107286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075133

RESUMO

PURPOSE: We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS: All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS: When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS: The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Animais , Ratos , Roedores/metabolismo , Bicarbonatos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagens de Fantasmas , Ácido Pirúvico/metabolismo , Lactatos , Alanina , Trifosfato de Adenosina , Desenho de Equipamento
11.
Neuro Oncol ; 24(11): 1898-1910, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35460557

RESUMO

BACKGROUND: TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, noninvasive imaging biomarkers are needed for the detection of TERT modulation. METHODS: Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated. RESULTS: 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1-13C]lactate production from [1-13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A. CONCLUSIONS: Our study indicates that MRS-detectable GSH, lactate, and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.


Assuntos
Glioblastoma , Telomerase , Humanos , Glioblastoma/tratamento farmacológico , Isótopos de Carbono/metabolismo , Isótopos de Carbono/uso terapêutico , Ácido Láctico/metabolismo , Biomarcadores , Telomerase/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo
12.
Front Oncol ; 11: 589570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937017

RESUMO

INTRODUCTION: The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging. METHODS: To interrogate the function of PGLS in redox, PGLS expression was silenced in U87, U251 and GS2 glioblastoma cells by RNA interference and levels of NADPH and reduced glutathione (GSH) measured. Clonogenicity assays were used to assess the effect of PGLS silencing on glioblastoma proliferation. Hyperpolarized δ-[1-13C]gluconolactone metabolism to 6PG was assessed in live cells treated with the chemotherapeutic agent temozolomide (TMZ) or with vehicle control. 13C 2D echo-planar spectroscopic imaging (EPSI) studies of hyperpolarized δ-[1-13C]gluconolactone metabolism were performed on rats bearing orthotopic glioblastoma tumors or tumor-free controls on a 3T spectrometer. Longitudinal 2D EPSI studies of hyperpolarized δ-[1-13C]gluconolactone metabolism and T2-weighted magnetic resonance imaging (MRI) were performed in rats bearing orthotopic U251 tumors following treatment with TMZ to examine the ability of hyperpolarized δ-[1-13C]gluconolactone to report on treatment response. RESULTS: PGLS knockdown downregulated NADPH and GSH, elevated oxidative stress and inhibited clonogenicity in all models. Conversely, PGLS expression and activity and steady-state NADPH and GSH were higher in tumor tissues from rats bearing orthotopic glioblastoma xenografts relative to contralateral brain and tumor-free brain. Importantly, [1-13C]6PG production from hyperpolarized δ-[1-13C]gluconolactone was observed in live glioblastoma cells and was significantly reduced by treatment with TMZ. Furthermore, hyperpolarized δ-[1-13C]gluconolactone metabolism to [1-13C]6PG could differentiate tumor from contralateral normal brain in vivo. Notably, TMZ significantly reduced 6PG production from hyperpolarized δ-[1-13C]gluconolactone at an early timepoint prior to volumetric alterations as assessed by anatomical imaging. CONCLUSIONS: Collectively, we have, for the first time, identified a role for PGLS activity in glioblastoma proliferation and validated the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive in vivo imaging of glioblastomas and their response to therapy.

13.
Mol Imaging Biol ; 22(5): 1324-1332, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514887

RESUMO

PURPOSE: Inflammation is involved in many disease processes. However, accurate imaging tools permitting diagnosis and characterization of inflammation are still missing. As inflamed tissues exhibit a high rate of glycolysis, pyruvate metabolism may offer a unique approach to follow the inflammatory response and disease progression. Therefore, the aim of the study was to follow metabolic changes and recruitment of inflammatory cells after onset of inflammation in arthritic ankles using hyperpolarized 1-13C-pyruvate magnetic resonance spectroscopy (MRS) and 19F magnetic resonance imaging (MRI), respectively. PROCEDURE: Experimental rheumatoid arthritis (RA) was induced by intraperitoneal injection of glucose-6-phosphate-isomerase-specific antibodies (GPI) containing serum. To monitor pyruvate metabolism, the transformation of hyperpolarized 1-13C-pyruvate into hyperpolarized 1-13C-lactate was followed using MRS. To track phagocytic immune cell homing, we intravenously injected a perfluorocarbon emulsion 48 h before imaging. The animals were scanned at days 1, 3, or 6 after GPI-serum injection to examine the different stages of arthritic inflammation. Finally, to confirm the pyruvate metabolic activity and the link to inflammatory cell recruitment, we conducted hematoxylin-eosin histopathology and monocarboxylase transporter (MCT-1) immune histochemistry (IHC) of inflamed ankles. RESULTS: Hyperpolarized 1-13C-pyruvate MRS revealed a high rate of lactate production immediately at day 1 after GPI-serum transfer, which remained elevated during the progression of the disease, while 19F-MRI exhibited a gradual recruitment of phagocytic immune cells in arthritic ankles, which correlated well with the course of ankle swelling. Histopathology and IHC revealed that MCT-1 was expressed in regions with inflammatory cell recruitment, confirming the metabolic shift identified in arthritic ankles. CONCLUSIONS: Our study demonstrated the presence of a very early metabolic shift in arthritic joints independent of phagocytic immune cell recruitment. Thus, hyperpolarized 1-13C-pyruvate represents a promising tracer to monitor acute arthritic joint inflammation, even with minor ankle swelling. Furthermore, translated to the clinics, these methods add a detailed characterization of disease status and could substantially support patient stratification and therapy monitoring.


Assuntos
Tornozelo/diagnóstico por imagem , Tornozelo/patologia , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/patologia , Inflamação/patologia , Ácido Láctico/biossíntese , Animais , Isótopos de Carbono , Feminino , Flúor/química , Articulações/patologia , Leucócitos/patologia , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ácido Pirúvico/metabolismo
14.
Mol Imaging Biol ; 21(5): 842-851, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30693432

RESUMO

PURPOSE: The objective was to assess metabolic changes in different stages of liver fibrosis using hyperpolarized C-13 magnetic resonance spectroscopy (MRS) and metabolic imaging. PROCEDURES: Mild and severe liver fibrosis were induced in C3H/HeN mice (n = 14) by injecting thioacetamide (TAA). Other C3H/HeN mice (n = 7) were injected with phosphate buffer saline (PBS) (7.4 pH) as normal controls. Hyperpolarized C-13 MRS was performed on the livers of the mice, which was accompanied by intravoxel incoherent motion (IVIM) diffusion-weighted imaging with 12 b values. The differential metabolite ratios, apparent diffusion coefficient values, and IVIM parameters among the three groups were analyzed by a one-way analysis of variance test. RESULTS: The ratios of [1-13C]lactate/pyruvate, [1-13C]lactate/total carbon (tC), [1-13C]alanine/pyruvate, and [1-13C] alanine/tC were significantly higher in both the mild and severe fibrosis groups than in the normal control group (p < 0.05). While the [1-13C]lactate/pyruvate and [1-13C]lactate/tC ratios were not significantly different between mild and severe fibrosis groups, the ratios of [1-13C]alanine/pyruvate and [1-13C]alanine/tC were significantly higher in the severe fibrosis group than in the mild fibrosis group (p < 0.05). In addition, D* showed a significantly lower value in the severe fibrosis group than in the normal or mild fibrosis groups and negatively correlated with the levels of [1-13C] lactate and [1-13C]alanine. CONCLUSIONS: Our findings suggest that it might be possible to differentiate mild from severe liver fibrosis using the cellular metabolic changes with hyperpolarized C-13 MRS and metabolic imaging.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/metabolismo , Metabolômica , Alanina/metabolismo , Animais , Área Sob a Curva , Imagem de Difusão por Ressonância Magnética , Ácido Láctico/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Metaboloma , Camundongos Endogâmicos C3H
15.
J Liver Disease Transplant ; 1(1)2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24224182

RESUMO

PURPOSE: Most cancers exhibit high levels of aerobic glycolytic metabolism with diminished levels of mitochondrial oxidative phosphorylation even in the presence of normal or near-normal levels of oxygen ("Warburg effect"). However, technical challenges have limited the development of non-invasive in vivo imaging techniques for monitoring glycolytic metabolism of hepatocellular carcinoma (HCC) and quantitatively evaluating the impact of this effect on the growth and therapy of this disease. Thus, there is a critical need to develop non-invasive techniques for longitudinal assessment of the metabolism and treatment response of patients with unresectable HCCs. PROCEDURES: This article discusses a novel method, "Hyperpolarized 13C MRS imaging", for achieving this objective and thus improving the prognosis of HCC patients. The primary objective has been to characterize in vivo metabolic biomarkers as determinants of HCC metabolism and treatment response of unresectable HCC tumors or viable HCC cells. RESULTS: This innovative technique capitalizes on a new technology that increases the sensitivity of MRS detection of crucial metabolites in cancer cells. CONCLUSION: It is anticipated that this innovative approach will lead to improved methods, both for the diagnosis and staging of HCCs and for the facilitation of the development of enzyme targeted therapies and other therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA