Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833473

RESUMO

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Assuntos
Cobre , Glutationa , Homeostase , Oxirredução , Animais , Camundongos , Humanos , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Morte Celular Imunogênica/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ferroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo
2.
Mol Ther ; 32(6): 1917-1933, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38637990

RESUMO

Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.


Assuntos
Vacinas Anticâncer , Imunoterapia , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Células Dendríticas/imunologia , Feminino , Antígenos de Neoplasias/imunologia
3.
Mol Ther ; 32(7): 2406-2422, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734899

RESUMO

Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.


Assuntos
Morte Celular Imunogênica , Terapia Viral Oncolítica , Vírus Oncolíticos , Vaccinia virus , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Camundongos , Humanos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Replicação Viral , Vetores Genéticos/genética
4.
Mol Ther ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097773

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a survival rate of 12%, and multiple clinical trials testing anti-PD-1 therapies against PDAC have failed, suggesting a need for a novel therapeutic strategy. In this study, we evaluated the potential of milbemycin oxime (MBO), an antiparasitic compound, as an immunomodulatory agent in PDAC. Our results show that MBO inhibited the growth of multiple PDAC cell lines by inducing apoptosis. In vivo studies showed that the oral administration of 5 mg/kg MBO inhibited PDAC tumor growth in both subcutaneous and orthotopic models by 49% and 56%, respectively. Additionally, MBO treatment significantly increased the survival of tumor-bearing mice by 27 days as compared to the control group. Interestingly, tumors from MBO-treated mice had increased infiltration of CD8+ T cells. Notably, depletion of CD8+ T cells significantly reduced the anti-tumor efficacy of MBO in mice. Furthermore, MBO significantly augmented the efficacy of anti-PD-1 therapy, and the combination treatment resulted in a greater proportion of active cytotoxic T cells within the tumor microenvironment. MBO was safe and well tolerated in all our preclinical toxicological studies. Overall, our study provides a new direction for the use of MBO against PDAC and highlights the potential of repurposing MBO for enhancing anti-PD-1 immunotherapy.

5.
Nano Lett ; 24(25): 7764-7773, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864366

RESUMO

Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.


Assuntos
Imunoterapia , Molibdênio , Terapia Fototérmica , Animais , Camundongos , Imunoterapia/métodos , Humanos , Molibdênio/química , Feminino , Linhagem Celular Tumoral , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Glutationa/química , Glutationa/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Raios Infravermelhos , Selênio/química , Selênio/uso terapêutico , Fototerapia/métodos
6.
Nano Lett ; 24(28): 8741-8751, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953486

RESUMO

The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Camundongos , Humanos , Linhagem Celular Tumoral , Proteólise/efeitos dos fármacos , Terapia por Ultrassom/métodos , Antígeno B7-H1 , Fatores de Transcrição , Proteínas de Ciclo Celular , Espécies Reativas de Oxigênio/metabolismo , Proteínas que Contêm Bromodomínio
7.
Nano Lett ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140448

RESUMO

Here we report a brand-new bioactive polymer featuring sulfonium moieties that exhibits the capability of inducing immunogenic cell death (ICD) for anticancer therapy. The optimized polysulfonium presents a wide spectrum of potent anticancer activity and remarkable selectivity. In-depth mechanistic studies reveal that the polymer exerts its cytotoxic effects on cancer cells through a membrane-disrupting mechanism. This further initiates the release of a plethora of damage-associated molecular patterns, effectively triggering ICD and resulting in systemic anticancer immune responses. Notably, the compound demonstrated significant efficacy in suppressing tumor growth in the B16-F10 melanoma tumor model. Furthermore, it exhibits robust immune memory effects, effectively suppressing tumor recurrence and metastasis in both the rechallenge model and the lung metastatic tumor model. To the best of our knowledge, the study represents the pioneering exportation of cationic polysulfoniums, showcasing not only their remarkable safety and efficacy against primary tumors but also their unique ability in activating long-term immune memory.

8.
BMC Genomics ; 25(1): 205, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395786

RESUMO

BACKGROUND: Immunogenic cell death (ICD) has been identified as regulated cell death, which is sufficient to activate the adaptive immune response. This study aimed to research ICD-related genes and create a gene model to predict pancreatic ductal adenocarcinoma (PAAD) patients' prognosis. METHODS: The RNA sequencing and clinical data were downloaded from the TGCA and GEO databases. The PAAD samples were classified into two subtypes based on the expression levels of ICD-related genes using consensus clustering. Based on the differentially expressed genes (DEGs), a prognostic scoring model was constructed using LASSO regression and Cox regression, and the scoring model was used to predict the prognosis of PAAD patients. Moreover, colony formation assay was performed to confirm the prognostic value of those genes. RESULTS: We identified two ICD cluster by consensus clustering, and found that the the ICD-high group was closely associated with immune-hot phenotype, favorable clinical outcomes. We established an ICD-related prognostic model which can predict the prognosis of pancreatic ductal adenocarcinoma. Moreover, depletion of NT5E, ATG5, FOXP3, and IFNG inhibited the colony formation ability of pancreatic cancer cell. CONCLUSION: We identified a novel classification for PAAD based on the expression of ICD-related genes, which may provide a potential strategy for therapeutics against PAAD.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Morte Celular Imunogênica , Transcriptoma , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Prognóstico , Microambiente Tumoral
9.
Biochem Biophys Res Commun ; 714: 149976, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677007

RESUMO

BACKGROUND: The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS: In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS: The drug sensitivity test revealed an IC50 value of 96.94 µg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 µg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION: EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.


Assuntos
Carcinoma Hepatocelular , Catequina , Catequina/análogos & derivados , Ácido Fólico , Neoplasias Hepáticas , Humanos , Catequina/farmacologia , Catequina/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Ácido Fólico/química , Ácido Fólico/farmacologia , Movimento Celular/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Nanosferas/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura , Calreticulina/metabolismo
10.
Cancer Immunol Immunother ; 73(3): 53, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353760

RESUMO

Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Despite several clinical advances the survival of patients with advanced colorectal cancer remains limited, demanding newer approaches. The immune system plays a central role in cancer development, propagation, and treatment response. Within the bowel, the colorectal mucosa is a key barrier and site of immune regulation that is generally immunosuppressive. Nonetheless, within this tumour microenvironment, it is evident that anti-neoplastic treatments which cause direct cytotoxic and cytostatic effects may also induce immunogenic cell death (ICD), a form of regulated cell death that leads to an anti-tumour immune response. Therefore, novel ICD inducers and molecular biomarkers of ICD action are urgently needed to advance treatment options for advanced CRC. This article reviews our knowledge of ICD in CRC.


Assuntos
Neoplasias Colorretais , Morte Celular Imunogênica , Humanos , Neoplasias Colorretais/tratamento farmacológico , Imunossupressores , Microambiente Tumoral
11.
Cancer Immunol Immunother ; 73(9): 177, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954046

RESUMO

Paclitaxel and anthracycline-based chemotherapy is one of the standard treatment options for breast cancer. However, only about 6-30% of breast cancer patients achieved a pathological complete response (pCR), and the mechanism responsible for the difference is still unclear. In this study, random forest algorithm was used to screen feature genes, and artificial neural network (ANN) algorithm was used to construct an ANN model for predicting the efficacy of neoadjuvant chemotherapy for breast cancer. Furthermore, digital pathology, cytology, and molecular biology experiments were used to verify the relationship between the efficacy of neoadjuvant chemotherapy and immune ecology. It was found that paclitaxel and doxorubicin, an anthracycline, could induce typical pyroptosis and bubbling in breast cancer cells, accompanied by gasdermin E (GSDME) cleavage. Paclitaxel with LDH release and Annexin V/PI doubule positive cell populations, and accompanied by the increased release of damage-associated molecular patterns, HMGB1 and ATP. Cell coculture experiments also demonstrated enhanced phagocytosis of macrophages and increased the levels of IFN-γ and IL-2 secretion after paclitaxel treatment. Mechanistically, GSDME may mediate paclitaxel and doxorubicin-induced pyroptosis in breast cancer cells through the caspase-9/caspase-3 pathway, activate anti-tumor immunity, and promote the efficacy of paclitaxel and anthracycline-based neoadjuvant chemotherapy. This study has practical guiding significance for the precision treatment of breast cancer, and can also provide ideas for understanding molecular mechanisms related to the chemotherapy sensitivity.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Piroptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Piroptose/efeitos dos fármacos , Feminino , Terapia Neoadjuvante/métodos , Camundongos , Animais , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Gasderminas
12.
BMC Med ; 22(1): 295, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020299

RESUMO

BACKGROUND: The increasing incidence of coeliac disease is leading to a growing interest in active search for associated factors, even the intrauterine and early life. The exposome approach to disease encompasses a life course perspective from conception onwards has recently been highlighted. Knowledge of early exposure to gluten immunogenic peptides (GIP) in utero could challenge the chronology of early prenatal tolerance or inflammation, rather than after the infant's solid diet after birth. METHODS: We developed an accurate and specific immunoassay to detect GIP in amniotic fluid (AF) and studied their accumulates, excretion dynamics and foetal exposure resulting from AF swallowing. One hundred twenty-five pregnant women with different gluten diets and gestational ages were recruited. RESULTS: GIP were detectable in AF from at least the 16th gestational week in gluten-consuming women. Although no significant differences in GIP levels were observed during gestation, amniotic GIP late pregnancy was not altered by maternal fasting, suggesting closed-loop entailing foetal swallowing of GIP-containing AF and subsequent excretion via the foetal kidneys. CONCLUSIONS: The study shows evidence, for the first time, of the foetal exposure to gluten immunogenic peptides and establishes a positive correlation with maternal gluten intake. The results obtained point to a novel physiological concept as they describe a plausible closed-loop circuit entailing foetal swallowing of GIP contained in AF and its subsequent excretion through the foetal kidneys. The study adds important new information to understanding the coeliac exposome.


Assuntos
Doença Celíaca , Glutens , Humanos , Feminino , Gravidez , Doença Celíaca/imunologia , Adulto , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Expossoma , Peptídeos , Imunoensaio/métodos , Polipeptídeo Inibidor Gástrico , Feto
13.
BMC Med ; 22(1): 154, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609982

RESUMO

BACKGROUND: Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS: RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS: PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS: PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Animais , Camundongos , Humanos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Expressão Gênica , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Fatores de Troca do Nucleotídeo Guanina
14.
Small ; 20(25): e2306263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221757

RESUMO

Intrinsic or acquired radioresistance remained an important challenge in the successful management of cancer. Herein, a novel "smart" multifunctional copper-based nanocomposite (RCL@Pd@CuZ) to improve radiotherapy (RT) sensitivity is designed and developed. In this nanoplatform, DSPE-PEG-RGD modified on the liposome surface enhanced tumor targeting and permeability; capsaicin inserted into the phospholipid bilayer improved the hypoxic conditions in the tumor microenvironment (TME) by inhibiting mitochondrial respiration; a Cu MOF porous cube encapsulated in liposome generated highly active hydroxyl radicals (OH·), consumed GSH and promoted cuproptosis by releasing Cu2+; the ultrasmall palladium (Pd) nanozyme within the cubes exhibited peroxidase activity, catalyzing toxic OH· generation and releasing oxygen from hydrogen peroxide; and lastly, Pd, as an element with a relatively high atomic number (Z) enhanced the photoelectric and Compton effects of X-rays. Therefore, RCL@Pd@CuZ enhance RT sensitivity by ameliorating hypoxia, promoting cuproptosis, depleting GSH, amplifying oxidative stress, and enhancing X-ray absorption  , consequently potently magnifying immunogenic cell death (ICD). In a mouse model , RCL@Pd@CuZ combined with RT yielded >90% inhibition compared with that obtained by RT alone in addition to a greater quantity of DC maturation and CD8+ T cell infiltration. This nanoplatform offered a promising remedial modality to facilitate cuproptosis-related cancer radioimmunotherapy.


Assuntos
Cobre , Radioimunoterapia , Animais , Radioimunoterapia/métodos , Cobre/química , Camundongos , Respiração Celular/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Paládio/química , Paládio/farmacologia , Lipossomos/química , Nanocompostos/química , Nanocompostos/uso terapêutico
15.
Small ; : e2402308, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39114869

RESUMO

Metalloimmunotherapy has achieved great preclinical success against malignant tumors. Nonetheless, the limited immune cell infiltration and impaired immunogenicity within the tumor microenvironment (TME) significantly hinder its translation to clinical applications. In this study, a zinc coordination lipid nanoparticle is developed loaded with calcium peroxide hydrate (CaO2) nanoparticles and the STING agonist diABZI-2, which is termed A-CaO2-Zn-LNP. The release of Zn2+ from the A-CaO2-Zn-LNP and the calcium overload synergistically induced immunogenic cell death (ICD). In addition, CaO2 nanoparticles can consume H+ and release oxygen (O2) under acidic conditions. This treatment increased the pH and alleviated the hypoxia of the TME. Along with cGAS-STING activation by diABZI-2, A-CaO2-Zn-LNP ultimately results in enhanced anti-tumor systemic immunity and long-term immune memory via alleviating the immunosuppressive microenvironment. Taken together, A-CaO2-Zn-LNP offers a new nanoplatform that expands its application for cancer treatment by metalloimmunotheray.

16.
Small ; 20(30): e2400254, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402432

RESUMO

Pyroptosis, a new mode of regulatory cell death, holds a promising prospect in tumor therapy. The occurrence of pyroptosis can trigger the release of damage-associated molecular patterns (DAMPs) and activate the antitumor immune response. Moreover, enhancing intracellular reactive oxygen species (ROS) generation can effectively induce pyroptosis. Herein, an integrated nanoplatform (hCZAG) based on zeolitic imidazolate framework-8 (ZIF-8) with Cu2+ and Zn2+ as active nodes and glucose oxidase (GOx) loading is constructed to evoke pyroptosis. GOx can effectively elevate intracellular hydrogen peroxide (H2O2) levels to regulate the unfavorable tumor microenvironment (TME). Cu2+ can be reduced to Cu+ by endogenous overexpressed GSH and both Cu2+ and Cu+ can exert Fenton-like activity to promote ROS generation and amplify oxidative stress. In addition, the accumulation of Cu2+ leads to the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), thus resulting in cuproptosis. Notably, the outburst of ROS induced by hCZAG activates Caspase-1 proteins, leads to the cleavage of gasdermin D (GSDMD), and induces pyroptosis. Pyroptosis further elicits an adaptive immune response, leading to immunogenic cell death (ICD). This study provides effective strategies for triggering pyroptosis-mediated immunotherapy and achieving improved therapeutic effects.


Assuntos
Glucose Oxidase , Piroptose , Espécies Reativas de Oxigênio , Microambiente Tumoral , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Humanos , Camundongos , Cobre/química , Peróxido de Hidrogênio/química , Linhagem Celular Tumoral , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Imunidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Imidazóis
17.
Small ; 20(21): e2309202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100237

RESUMO

Histone deacetylases (HDACs) are a class of epigenetic enzymes that are closely related to tumorigenesis and suppress the expression of tumor suppressor genes. Whereas the HDACs inhibitors can release DNA into the cytoplasm and trigger innate immunity. However, the high density of chromatin limits DNA damage and release. In this study, suitable nanosized CycNHOH NPs (150 nm) and CypNHOH NPs (85 nm) efficiently accumulate at the tumor site due to the enhanced permeability and retention (EPR) effect. In addition, robust single-linear oxygen generation and good photothermal conversion efficiency under NIR laser irradiation accelerated the DNA damage process. By effectively initiating immune cell death, CypNHOH NPs activated both innate and adaptive immunity by maturing dendritic cells, infiltrating tumors with natural killer cells, and activating cytotoxic T lymphocytes, which offer a fresh perspective for the development of photo-immunotherapy.


Assuntos
Epigênese Genética , Imunoterapia , Raios Infravermelhos , Nanopartículas , Neoplasias , Imunoterapia/métodos , Epigênese Genética/efeitos dos fármacos , Nanopartículas/química , Animais , Neoplasias/terapia , Fototerapia/métodos , Humanos , Morte Celular/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral
18.
Small ; : e2311244, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898764

RESUMO

Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for the treatment of solid tumors, but residual malignant tissues or small satellite lesions after insufficient RFA (iRFA) are difficult to remove, often leading to metastasis and recurrence. Here, Fe-TPZ nanoparticles are designed by metal ion and (TPZ) ligand complexation for synergistic enhancement of RFA residual tumor therapy. Fe-TPZ nanoparticles are cleaved in the acidic microenvironment of the tumor to generate Fe2+ and TPZ. TPZ, an anoxia-dependent drug, is activated in residual tumors and generates free radicals to cause tumor cell death. Elevated Fe2+ undergoes a redox reaction with glutathione (GSH), inducing a strong Fenton effect and promoting the production of the highly toxic hydroxyl radical (•OH). In addition, the ROS/GSH imbalance induced by this treatment promotes immunogenic cell death (ICD), which triggers the release of damage-associated molecular patterns, macrophage polarization, and lymphocyte infiltration, thus triggering a systemic antitumor immune response and noteworthy prevention of tumor metastasis. Overall, this integrated treatment program driven by multiple microenvironment-dependent pathways overcomes the limitations of the RFA monotherapy approach and thus improves tumor prognosis. Furthermore, these findings aim to provide new research ideas for regulating the tumor immune microenvironment.

19.
Small ; 20(24): e2310636, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412413

RESUMO

Several DNA-damaging antitumor agents, including ruthenium complexes, induce immunogenic cell death (ICD). In this study, an arginyl-glycyl-aspartic acid (RGD) peptide-modified carboline ruthenium complex (KS-Ru) is synthesized as a chemotherapeutic nanodrug and an ICD inducer. The RGD peptide, an integrin ligand, provides tumor-specific targeting and promotes self-assembly of the KS-Ru complex. The pH-responsive self-assembly is assessed through transmission and scanning electron microscopy. Additionally, in vitro cytotoxic activity and anti-metastasis ability are evaluated using MTT and Transwell assays, respectively, along with cellular immunofluorescence staining and imaging flow cytometry. The ability of the complex to inhibit primary tumor formation and lung metastasis in vivo is evaluated using Lewis lung cancer and A549 xenograft models. Furthermore, the tumor immune microenvironment is evaluated using single-cell flow mass cytometry. KS-Ru translocates to the nucleus, causing DNA damage and inducing ICD. Within the lysosomes, KS-Ru self-assembled into nanoflowers, leading to lysosomal swelling and apoptosis. Notably, the as-synthesized pH-dependent ruthenium nanomedicine achieves dual functionality-chemotherapy and immunotherapy. Moreover, the pH-responsive self-assembly of KS-Ru enables simultaneous mechanisms in the lysosome and nucleus, thereby lowering the likelihood of drug resistance. This study provides valuable insight for the design of novel ruthenium-based nanoantitumor drugs.


Assuntos
DNA , Morte Celular Imunogênica , Lisossomos , Rutênio , Rutênio/química , Rutênio/farmacologia , Concentração de Íons de Hidrogênio , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , DNA/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células A549 , Linhagem Celular Tumoral
20.
Small ; 20(31): e2309026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38477698

RESUMO

Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2)-dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging-escorted self-oxygenation PDT. MMCC@EM is synthesized by encapsulating chlorin e6 (Ce6) and catalase (CAT) in metal-organic framework (MOF) nanoparticles with erythrocyte membrane (EM) camouflage. Based on the biomimetic properties of EM, MMCC@EM efficiently accumulates in tumor tissues. The enriched MMCC@EM achieves TME-activatable drug release, thereby releasing CAT and Ce6, and this process can be monitored through fluorescence (FL) imaging. In addition, endogenous hydrogen peroxide (H2O2) will be decomposed by CAT to produce O2, which can be reflected by the measurement of intratumoral oxygen concentration using photoacoustic (PA) imaging. Such self-oxygenation nanotheranostics effectively mitigate tumor hypoxia and improve the generation of singlet oxygen (1O2). The 1O2 disrupts mitochondrial function and triggers caspase-3-mediated cellular apoptosis. Furthermore, MMCC@EM triggers immunogenic cell death (ICD) effect, leading to an increased infiltration of cytotoxic T lymphocytes (CTLs) into tumor tissues. As a result, MMCC@EM exhibits good therapeutic effects in 4T1-tumor bearing mice under the navigation of FL/PA duplex imaging.


Assuntos
Membrana Eritrocítica , Fotoquimioterapia , Porfirinas , Nanomedicina Teranóstica , Fotoquimioterapia/métodos , Membrana Eritrocítica/química , Animais , Nanomedicina Teranóstica/métodos , Porfirinas/química , Porfirinas/uso terapêutico , Nanopartículas/química , Oxigênio/química , Imagem Óptica/métodos , Clorofilídeos , Imagem Molecular/métodos , Catalase/metabolismo , Camundongos , Humanos , Estruturas Metalorgânicas/química , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA