Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058578

RESUMO

Anti-platelet factor 4 immunothrombotic syndromes comprise a group of disorders that include heparin-induced thrombocytopenia and vaccine-induced immune thrombocytopenia and thrombosis. These are highly prothrombotic, immunological disorders characterised by specific clinical and pathological criteria which include thrombocytopenia and thrombosis. While they are predominantly triggered by heparin and the adenoviral vector vaccines, respectively, other provoking factors have been described, as well as spontaneous forms. The unexplained co-occurrence of thrombocytopenia with thrombosis should raise suspicion and prompt testing. This nutshell review discusses the pathophysiology, presenting features and diagnostic criteria for these conditions.

2.
J Autoimmun ; 145: 103216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552408

RESUMO

Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.


Assuntos
Ativação do Complemento , Inativadores do Complemento , Proteínas do Sistema Complemento , Humanos , Inativadores do Complemento/uso terapêutico , Inativadores do Complemento/efeitos adversos , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Ativação do Complemento/efeitos dos fármacos , Animais , Resultado do Tratamento , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/imunologia
3.
Ann Pharm Fr ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159826

RESUMO

The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.

4.
Eur J Immunol ; 52(7): 1024-1034, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569038

RESUMO

Activation of the coagulation cascade is a critical, evolutionarily conserved mechanism that maintains hemostasis by rapidly forming blood clots in response to blood-borne infections and damaged blood vessels. Coagulation is a key component of innate immunity since it prevents bacterial dissemination and can provoke inflammation. The term immunothrombosis describes the process by which the innate immune response drives aberrant coagulation, which can result in a lethal condition termed disseminated intravascular coagulation, often seen in sepsis. In this review, we describe the recently uncovered molecular mechanisms underlying inflammasome- and STING-driven immunothrombosis induced by bacterial and viral infections, culminating in tissue factor (TF) activation and release. Current anticoagulant therapeutics, while effective, are associated with a life-threatening bleeding risk, requiring the urgent development of new treatments. Targeting immunothrombosis may provide a safer option. Thus, we highlight preclinical tools which target TF and/or block canonical (NLRP3) or noncanonical (caspase-11) inflammasome activation as well as STING-driven TF release and discuss clinically approved drugs which block key immunothrombotic processes and, therefore, may be redeployed as safer anticoagulants.


Assuntos
Inflamassomos , Tromboinflamação , Coagulação Sanguínea , Hemostasia , Humanos , Imunidade Inata
5.
Am J Physiol Regul Integr Comp Physiol ; 324(5): R613-R624, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878489

RESUMO

Sepsis, a medical emergency, is the overwhelming host response to infection leading to organ failure. The pathophysiology of this heterogeneous disease includes an inflammatory response that stimulates a complex interaction between endothelial and complements with associated coagulation abnormalities. Despite a more comprehensive understanding of sepsis pathophysiology, there exists a translational gap to improve sepsis diagnosis clinically. Many of the proposed biomarkers to diagnose sepsis lack sufficient specificity and sensitivity to be used in routine clinical practice. There has also been a lack of progress in diagnostic tools due to the focus on the inflammatory pathway. Inflammation and coagulation are known to be linked to the innate immune response. Early immunothrombotic changes could result in the early switch from infection to sepsis and aid in sepsis diagnosis. This review integrates both preclinical and clinical studies that highlight sepsis pathophysiology providing a framework for how the development of immunothrombosis could be used as a starting point to investigate biomarkers for early sepsis diagnosis.


Assuntos
Sepse , Humanos , Sepse/diagnóstico , Imunidade Inata , Inflamação , Biomarcadores/metabolismo
6.
Biochem J ; 479(6): 731-750, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35344028

RESUMO

The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1ß and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.


Assuntos
Tratamento Farmacológico da COVID-19 , Trombose , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Humanos , Inflamação/complicações , Piroptose , SARS-CoV-2 , Tromboinflamação , Tromboplastina/metabolismo
7.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069209

RESUMO

Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Plaquetas/metabolismo , COVID-19/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas HMGB/metabolismo , Leucócitos/metabolismo , Tromboplastina/metabolismo
8.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139298

RESUMO

The presence of long COVID (LC) following SARS-CoV-2 infection is a common condition that affects the quality of life of patients and represents a diagnostic challenge due to the diversity of symptoms that may coexist. We still do not have accurate information regarding the pathophysiological pathways that generate the presence of LC, and so it is important to know the inflammatory and immunothrombotic biomarker profiles and their implications in order to characterize risk subgroups and establish early therapeutic strategies. We performed the determination of inflammatory and immunothrombotic biomarkers in volunteers with previous diagnoses of SARS-CoV-2. The inflammatory biomarkers were analyzed in plasma by flow cytometry, and we analyzed the von Willebrand factor (vWF) in the plasma samples using ELISA. The clinical variables and the presence or absence of long COVID symptoms were then analyzed. IL-6, sCD40L, p-Selectin, PSGL-1, PAI-1, tPA, D-Dimer, TF, and Factor IX levels were elevated in the groups with LC, especially in the subgroup of patients with metabolic syndrome (MetS). VWF levels were found to be increased in patients with sequelae and MetS. Our results confirmed the persistence of an active immunothrombotic state, and so it is important to identify the population at risk in order to provide adequate clinical follow-up.


Assuntos
COVID-19 , Síndrome Metabólica , Humanos , Fator de von Willebrand/metabolismo , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , SARS-CoV-2/metabolismo , Biomarcadores , Progressão da Doença
9.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983067

RESUMO

Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.


Assuntos
Armadilhas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Neutrófilos , Histonas , Atenção , Microambiente Tumoral
10.
Arch Biochem Biophys ; 728: 109353, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35853481

RESUMO

Myeloperoxidase (MPO), an oxidant-producing enzyme of neutrophils, has been shown to prime platelet activity promoting immunothrombosis. Native MPO is a homodimer, consisting of two identical protomers (monomer) connected by a single disulfide bond. But in inflammatory foci, MPO can be found both in the form of a monomer and in the form of a dimer. Beside MPO can also be in complexes with other molecules and be modified by oxidants, which ultimately affect its physicochemical properties and functions. Here we compared the effects of various forms of MPO as well as MPO in complex with ceruloplasmin (CP), a physiological inhibitor of MPO, on the platelet activity. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. MPO was modified with HOCl in a molar ratio of 1:100 (MPO-HOCl). Using surface-enhanced Raman scattering (SERS) spectroscopy we showed that peaks at about 510 and 526 cm-1 corresponded to disulfide bond was recognizable in the SERS-spectra of dimeric MPO, absent in the spectrum of hemi-MPO and less intense in the spectra of MPO-HOCl, which indicates the partial decomposition of dimeric MPO with a disulfide bond cleavage under the HOCl modification. It was shown hemi-MPO to a lesser extent than dimeric MPO bound to platelets and enhanced their agonist-induced aggregation and platelet-neutrophil aggregate formation. MPO modified by HOCl and MPO in complex with CP did not bind to platelets and have no effect on platelet activity. Thus, the modification of MPO by HOCl, its presence in monomeric form as well as in complex with CP reduces MPO effect on platelet function and consequently decreases the risk of thrombosis in inflammatory foci.


Assuntos
Neutrófilos , Peroxidase , Corantes , Dissulfetos , Ácido Hipocloroso , Oxidantes , Ativação Plaquetária
11.
Trends Immunol ; 40(10): 922-938, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601520

RESUMO

Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth.


Assuntos
Lesão Pulmonar Aguda/imunologia , Bactérias/imunologia , Plaquetas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Sepse/imunologia , Imunidade Adaptativa/imunologia , Animais , Humanos
12.
Clin Sci (Lond) ; 136(24): 1809-1829, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36524413

RESUMO

Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.


Assuntos
COVID-19 , Trombose , Humanos , Imunidade Inata , Hemostasia/fisiologia , Coagulação Sanguínea
13.
J Biomed Sci ; 29(1): 52, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820906

RESUMO

BACKGROUND: Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. RESULTS: We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a-/-/tlr2-/- mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a-/-/tlr2-/- mice. CONCLUSIONS: This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients.


Assuntos
COVID-19 , Lectinas Tipo C , Neutrófilos , Pneumonia , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Trombose , Animais , Plaquetas/imunologia , Plaquetas/patologia , Plaquetas/virologia , COVID-19/sangue , COVID-19/imunologia , Humanos , Lectinas Tipo C/imunologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/patologia , Neutrófilos/virologia , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia , Receptores de Superfície Celular , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/imunologia , Trombose/sangue , Trombose/imunologia , Trombose/virologia , Receptor 2 Toll-Like/imunologia
14.
Arterioscler Thromb Vasc Biol ; 41(2): 988-994, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267662

RESUMO

OBJECTIVE: The full spectrum of coronavirus disease 2019 (COVID-19) infection ranges from asymptomatic to acute respiratory distress syndrome, characterized by hyperinflammation and thrombotic microangiopathy. The pathogenic mechanisms are poorly understood, but emerging evidence suggest that excessive neutrophil extracellular trap (NET) formation plays a key role in COVID-19 disease progression. Here, we evaluate if circulating markers of NETs are associated with COVID-19 disease severity and clinical outcome, as well as to markers of inflammation and in vivo coagulation and fibrinolysis. Approach and Results: One hundred six patients with COVID-19 with moderate to severe disease were enrolled shortly after hospital admission and followed for 4 months. Acute and convalescent plasma samples as well as plasma samples from 30 healthy individuals were assessed for markers of NET formation: citrullinated histone H3, cell-free DNA, NE (neutrophil elastase). We found that all plasma levels of NET markers were elevated in patients with COVID-19 relative to healthy controls, that they were associated with respiratory support requirement and short-term mortality, and declined to those found in healthy individuals 4 months post-infection. The levels of the NET markers also correlated with white blood cells, neutrophils, inflammatory cytokines, and C-reactive protein, as well as to markers of in vivo coagulation, fibrinolysis, and endothelial damage. CONCLUSIONS: Our findings suggest a role of NETs in COVID-19 disease progression, implicating their contribution to an immunothrombotic state. Further, we observed an association between circulating markers of NET formation and clinical outcome, demonstrating a potential role of NET markers in clinical decision-making, as well as for NETs as targets for novel therapeutic interventions in COVID-19.


Assuntos
COVID-19/sangue , COVID-19/complicações , Armadilhas Extracelulares/metabolismo , Idoso , Biomarcadores/sangue , Síndrome da Liberação de Citocina/sangue , Progressão da Doença , Endotélio Vascular/metabolismo , Feminino , Fibrinólise , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Trombose/virologia
15.
BMC Neurol ; 22(1): 186, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596126

RESUMO

BACKGROUND: Recent evidence suggests a merging role of immunothrombosis in the formation of arterial thrombosis. Our study aims to investigate its relevance in stroke patients. METHODS: We compared the peripheral immunological profile of stroke patients vs. healthy controls. Serum samples were functionally analyzed for their formation and clearance of Neutrophil-Extracellular-Traps. The composition of retrieved thrombi has been immunologically analyzed. RESULTS: Peripheral blood of stroke patients showed significantly elevated levels of DNAse-I (p < 0.001), LDG (p = 0.003), CD4 (p = 0.005) as well as the pro-inflammatory cytokines IL-17 (p < 0.001), INF-γ (p < 0.001) and IL-22 (p < 0.001) compared to controls, reflecting a TH1/TH17 response. Increased counts of DNAse-I in sera (p = 0.045) and Neutrophil-Extracellular-Traps in thrombi (p = 0.032) have been observed in patients with onset time of symptoms longer than 4,5 h. Lower values of CD66b in thrombi were independently associated with greater improvement of NIHSS after mechanical thrombectomy (p = 0.045). Stroke-derived neutrophils show higher potential for Neutrophil-Extracellular-Traps formation after stimulation and worse resolution under DNAse-I treatment compared to neutrophils derived from healthy individuals. CONCLUSIONS: Our data provide new insight in the role of activated neutrophils and Neutrophil-Extracellular-Traps in ischemic stroke. Future larger studies are warranted to further investigate the role of immunothrombosis in the cascades of stroke. TRIAL REGISTRATION: DRKS, DRKS00013278, Registered 15 November 2017, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013278.


Assuntos
Armadilhas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Desoxirribonucleases , Humanos , Neutrófilos
16.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361963

RESUMO

Venous thromboembolism (VTE) is the third leading cardiovascular cause of death and is conventionally treated with anticoagulants that directly antagonize coagulation. However, recent data have demonstrated that also platelets play a crucial role in VTE pathophysiology. In the current review, we outline how platelets are involved during all stages of experimental venous thrombosis. Platelets mediate initiation of the disease by attaching to the vessel wall upon which they mediate leukocyte recruitment. This process is referred to as immunothrombosis, and within this novel concept inflammatory cells such as leukocytes and platelets directly drive the progression of VTE. In addition to their involvement in immunothrombosis, activated platelets can directly drive venous thrombosis by supporting coagulation and secreting procoagulant factors. Furthermore, fibrinolysis and vessel resolution are (partly) mediated by platelets. Finally, we summarize how conventional antiplatelet therapy can prevent experimental venous thrombosis and impacts (recurrent) VTE in humans.


Assuntos
Tromboembolia Venosa , Trombose Venosa , Humanos , Plaquetas , Tromboinflamação , Coagulação Sanguínea , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
17.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362165

RESUMO

Ingenol mebutate (IM) is highly effective in the treatment of human papillomavirus (HPV)-induced anogenital warts (AGW) leading to fast ablation within hours. However, the exact mode of action is still largely unknown. We performed dermoscopy, in vivo confocal microscopy (CLM), histology, immunohistochemistry, and immunofluorescence to gain insights in mechanisms of IM treatment in AGW. In addition, we used in vitro assays (ELISA, HPV-transfection models) to further investigate in vivo findings. IM treatment leads to a strong recruitment of neutrophils with thrombosis of small skin vessels within 8 h, in a sense of immunothrombosis. In vivo and in vitro analyses showed that IM supports a prothrombotic environment by endothelial cell activation and von Willebrand factor (VWF) secretion, in addition to induction of neutrophil extracellular traps (NETosis). IM superinduces CXCL8/IL-8 expression in HPV-E6/E7 transfected HaCaT cells when compared to non-infected keratinocytes. Rapid ablation of warts after IM treatment can be well explained by the observed immunothrombosis. This new mechanism has so far only been observed in HPV-induced lesions and is completely different from the mechanisms we see in the treatment of transformed keratinocytes in actinic keratosis. Our initial findings indicate an HPV-specific effect, which could be also of interest for the treatment of other HPV-induced lesions. Larger studies are now needed to further investigate the potential of IM in different HPV tumors.


Assuntos
Condiloma Acuminado , Diterpenos , Ceratose Actínica , Infecções por Papillomavirus , Anormalidades da Pele , Verrugas , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Condiloma Acuminado/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Papillomaviridae , Necrose
18.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499449

RESUMO

Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.


Assuntos
COVID-19 , Armadilhas Extracelulares , Doenças Vasculares , Masculino , Feminino , Humanos , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Pulmão/patologia , Neutrófilos/patologia , Doenças Vasculares/patologia
19.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293431

RESUMO

Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemostáticos , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Tromboinflamação , Proteoma , Hemostasia
20.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142282

RESUMO

For over two years, the world has been facing the epidemiological and health challenge of the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Growing problems are also complications after the development of COVID-19 in the form of post and long- COVID syndromes, posing a challenge for the medical community, both for clinicians and the scientific world. SARS-CoV-2 infection is associated with an increased risk of cardiovascular complications, especially thromboembolic complications, which are associated with both thrombosis of small and very small vessels due to immunothrombosis, and the development of venous thromboembolism. Low molecular wight heparin (LMHW) are the basic agents used in the prevention and treatment of thromboembolic complications in COVID-19. There is still a great deal of controversy regarding both the prevention and treatment of thromboembolic complications, including the prophylaxis dose or the optimal duration of anticoagulant treatment in patients with an episode of venous thromboembolism.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Tromboembolia Venosa , Trombose Venosa , Anticoagulantes/uso terapêutico , COVID-19/complicações , Heparina/uso terapêutico , Humanos , SARS-CoV-2 , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Trombose Venosa/tratamento farmacológico , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA