Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(5): 1123-1134.e11, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775592

RESUMO

Genome-wide association studies have identified risk loci associated with the development of inflammatory bowel disease, while epidemiological studies have emphasized that pathogenesis likely involves host interactions with environmental elements whose source and structure need to be defined. Here, we identify a class of compounds derived from dietary, microbial, and industrial sources that are characterized by the presence of a five-membered oxazole ring and induce CD1d-dependent intestinal inflammation. We observe that minimal oxazole structures modulate natural killer T cell-dependent inflammation by regulating lipid antigen presentation by CD1d on intestinal epithelial cells (IECs). CD1d-restricted production of interleukin 10 by IECs is limited through activity of the aryl hydrocarbon receptor (AhR) pathway in response to oxazole induction of tryptophan metabolites. As such, the depletion of the AhR in the intestinal epithelium abrogates oxazole-induced inflammation. In summary, we identify environmentally derived oxazoles as triggers of CD1d-dependent intestinal inflammatory responses that occur via activation of the AhR in the intestinal epithelium.


Assuntos
Colite/patologia , Dieta , Intestinos/patologia , Oxazóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Intestinos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Triptofano/metabolismo
2.
Immunity ; 54(10): 2354-2371.e8, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614413

RESUMO

Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
3.
Immunity ; 48(1): 147-160.e7, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343435

RESUMO

Despite recent advances, many cancers remain refractory to available immunotherapeutic strategies. Emerging evidence indicates that the tolerization of local dendritic cells (DCs) within the tumor microenvironment promotes immune evasion. Here, we have described a mechanism by which melanomas establish a site of immune privilege via a paracrine Wnt5a-ß-catenin-peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway that drives fatty acid oxidation (FAO) in DCs by upregulating the expression of the carnitine palmitoyltransferase-1A (CPT1A) fatty acid transporter. This FAO shift increased the protoporphyrin IX prosthetic group of indoleamine 2,3-dioxgenase-1 (IDO) while suppressing interleukin(IL)-6 and IL-12 cytokine expression, culminating in enhanced IDO activity and the generation of regulatory T cells. We demonstrated that blockade of this pathway augmented anti-melanoma immunity, enhanced the activity of anti-PD-1 antibody immunotherapy, and suppressed disease progression in a transgenic melanoma model. This work implicates a role for tumor-mediated metabolic reprogramming of local DCs in immune evasion and immunotherapy resistance.


Assuntos
Células Dendríticas/metabolismo , Melanoma/imunologia , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Feminino , Citometria de Fluxo , Immunoblotting , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Comunicação Parácrina/fisiologia , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia
4.
J Virol ; 98(7): e0045824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38814067

RESUMO

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.


Assuntos
Vírus da Febre Suína Clássica , Indolamina-Pirrol 2,3,-Dioxigenase , NF-kappa B , Transdução de Sinais , Triptofano , Replicação Viral , Triptofano/metabolismo , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , NF-kappa B/metabolismo , Suínos , Vírus da Febre Suína Clássica/fisiologia , Linhagem Celular , Cinurenina/metabolismo , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , Autofagia
5.
J Neurochem ; 168(9): 3333-3357, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38102897

RESUMO

Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Neuroimunomodulação , Triptofano , Cinurenina/metabolismo , Humanos , Triptofano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Animais , Neuroimunomodulação/fisiologia , Transdução de Sinais/fisiologia
6.
J Med Virol ; 96(2): e29472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373201

RESUMO

Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Replicação Viral , Pulmão , Interferons , Células Epiteliais , Antivirais/farmacologia
7.
Invest New Drugs ; 42(1): 35-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038862

RESUMO

BACKGROUND: Indoleamine-2,3-dioxygenase (IDO) helps orchestrate immune suppression and checkpoint inhibitor resistance in hepatocellular carcinoma (HCC). BMS-986,205 is a novel oral drug that potently and selectively inhibits IDO. This Phase I/II study evaluated the safety and tolerability of BMS-986,205 in combination with nivolumab as first-line therapy in advanced HCC. METHODS: Adults with untreated, unresectable/metastatic HCC received BMS-986,205 at two dose levels (50-100 mg orally daily) in combination with fixed dose nivolumab (240mg/m2 IV on Day 1 of each 14-day cycle). The primary objective was to determine the safety and tolerability of this combination; secondary objectives were to obtain preliminary efficacy. RESULTS: Eight patients received a total of 91 treatment cycles in the dose escalation phase. All patients were Child Pugh A and 6 patients had underlying viral hepatitis. In the 6 evaluable patients, no dose-limiting toxicities (DLTs) were observed. The most common treatment-related adverse events (TRAEs) were aspartate transaminase (AST) and alanine transaminase (ALT) elevation (3 patients) and diarrhea, maculopapular rash and increased alkaline phosphatase (2 patients each). Grade 3 events were diarrhea and AST elevation (1 patient), and hyperglycemia and pancreatitis requiring treatment discontinuation (1 patient). No grade 4-5 events occurred. Partial response was observed in 1 patient (12.5%) and stable disease in 3 patients (37.5%), yielding a disease control rate of 50%. Median PFS was 8.5 weeks; median OS was not reached. CONCLUSION: Combination BMS-986,205 and nivolumab showed a manageable safety profile with durable benefit as first-line therapy in a meaningful subset of advanced HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Alanina Transaminase , Aspartato Aminotransferases , Carcinoma Hepatocelular/tratamento farmacológico , Diarreia , Neoplasias Hepáticas/tratamento farmacológico , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêutico
8.
Invest New Drugs ; 42(3): 261-271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530565

RESUMO

BACKGROUND: Pembrolizumab plus epacadostat (indoleamine 2,3-dioxygenase-1 inhibitor) was well tolerated in Japanese patients with advanced solid tumors in part A of the nonrandomized, open-label, phase 1 KEYNOTE-434 study (NCT02862457). We report results from part B, which evaluated epacadostat plus pembrolizumab and chemotherapy in Japanese patients with advanced non-small-cell lung cancer (NSCLC). METHODS: Eligible patients aged ≥ 20 years had histologically or cytologically confirmed stage IIIB or IV NSCLC with no prior systemic therapy, and ECOG performance status of 0 or 1. Patients received epacadostat 100 mg orally twice-daily, pembrolizumab 200 mg intravenously every-3-weeks for ≤ 35 cycles, and 4 cycles of chemotherapy (cohort 1: cisplatin plus pemetrexed, non-squamous; cohort 2: carboplatin plus pemetrexed, non-squamous; cohort 3: carboplatin plus paclitaxel, squamous or non-squamous). Primary endpoint was incidence of dose-limiting toxicities (DLTs). Following unfavorable results from other studies, a protocol amendment removed epacadostat from the treatment combination. RESULTS: Of 19 patients, 7 were enrolled in cohort 1, and 6 each in cohorts 2 and 3. Median follow-up was 13.7 (range, 4.2-27.8) months. Five of 17 (29%) DLT-evaluable patients experienced ≥ 1 DLT (cohort 1, n = 1; cohorts 2 and 3, n = 2 each); most commonly maculopapular rash (grade 3, n = 3) and increased alanine aminotransferase (grade 2, n = 1; grade 3, n = 2). All patients experienced treatment-related adverse events (AEs); 58% experienced grade 3 or 4 treatment-related AEs. Objective response rate was 47%. CONCLUSION: The combination of epacadostat plus pembrolizumab and chemotherapy was found to be tolerable in Japanese patients with advanced NSCLC. TRIAL REGISTRATION: ClinicalTrials.gov , NCT02862457.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Carboplatina/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , População do Leste Asiático , Japão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Oximas/administração & dosagem , Oximas/efeitos adversos , Oximas/uso terapêutico , Pemetrexede/administração & dosagem , Pemetrexede/uso terapêutico , Pemetrexede/efeitos adversos , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Sulfonamidas/efeitos adversos
9.
Neurochem Res ; 49(5): 1239-1253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383879

RESUMO

Neuroinflammation plays crucial role in the development and progression of depression. Large conductance calcium- and voltage-dependent potassium (BK) channels mediate the activation of microglia. Herein, we investigated whether BK channels could serve as a target for the treatment of inflammation-associated depression. Lipopolysaccharide (LPS, 0.83 mg/kg) was injected intraperitoneally (i.p.) to induce neuroinflammation and depressive-like behavior in 6-8 week ICR mice. Adeno-associated virus (AAV) constructs (AAV9-Iba1p-BK shRNA-EGFP (BK shRNA-AAV) or AAV9-Iba1p-NC shRNA-EGFP (NC shRNA-AAV)) were unilaterally injected intracerebroventricularly to selectively knock down BK channels in microglia. The tail suspension test (TST) and forced-swim test (FST) were used to evaluate depressive-like behavior in mice 24 h after LPS challenge. The morphology of microglia, expression of BK channels, levels of cytokines, and expression and activity of indoleamine 2,3-dioxygenase (IDO) were measured by immunohistochemistry, western blot, quantitative real time PCR, and enzyme-linked immunosorbent assay (ELISA), respectively. Either paxilline (i.p.), a specific BK channel blocker, or BK shRNA-AAV effectively inhibited the activation of microglia, reduced the production of IL-1ß in the hippocampus and suppressed the expression and activity of IDO in the hippocampus and prefrontal cortex, resulting in the amelioration of depressive-like behavior in mice. These data suggest for the first time that BK channels are involved in LPS-induced depressive-like behaviors. Thus, microglia BK channels may be a potential drug target for the depression treatment.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Camundongos Endogâmicos ICR , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , RNA Interferente Pequeno
10.
Med Microbiol Immunol ; 213(1): 2, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430452

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Criança , Humanos , Cinurenina , Diarreia , Inflamação , Piridoxal
11.
Bioorg Med Chem Lett ; 108: 129796, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754563

RESUMO

In this work, we report 14 novel quinazoline derivatives as immune checkpoint inhibitors, IDO1 and PD-L1. The antitumor screening of synthesized compounds on ovarian cancer cells indicated that compound V-d and V-l showed the most activity with IC50 values of about 5 µM. Intriguingly, compound V-d emerges as a stand out, triggering cell death through caspase-dependent and caspase-independent manners. More importantly, V-d presents its ability to hinder tumor sphere formation and re-sensitized cisplatin-resistant A2780 cells to cisplatin treatment. These findings suggest that compound V-d emerges as a promising lead candidate for the future development of immuno anticancer agents.


Assuntos
Antineoplásicos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Checkpoint Imunológico , Quinazolinas , Humanos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Relação Estrutura-Atividade , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo
12.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621594

RESUMO

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Assuntos
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Cinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Estrutura Molecular , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Relação Dose-Resposta a Droga
13.
Bioorg Chem ; 152: 107740, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217780

RESUMO

Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.


Assuntos
Benzoxazóis , Desenho de Fármacos , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Lipopolissacarídeos , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células RAW 264.7 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Benzoxazóis/farmacologia , Benzoxazóis/química , Benzoxazóis/síntese química , Estrutura Molecular , Edema/tratamento farmacológico , Edema/induzido quimicamente , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Masculino
14.
Bioorg Chem ; 148: 107426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733750

RESUMO

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Assuntos
Inibidores Enzimáticos , Heme , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia
15.
J Nanobiotechnology ; 22(1): 542, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238020

RESUMO

Phototherapy is a promising antitumor modality, which consists of photothermal therapy (PTT) and photodynamic therapy (PDT). However, the efficacy of phototherapy is dramatically hampered by local hypoxia in tumors, overexpression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand-1 (PD-L1) on tumor cells. To address these issues, self-assembled multifunctional polymeric micelles (RIMNA) were developed to co-deliver photosensitizer indocyanine green (ICG), oxygenator MnO2, IDO inhibitor NLG919, and toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). It is worth noting that RIMNA polymeric micelles had good stability, uniform morphology, superior biocompatibility, and intensified PTT/PDT effect. What's more, RIMNA-mediated IDO inhibition combined with programmed death receptor-1 (PD-1)/PD-L1 blockade considerably improved immunosuppression and promoted immune activation. RIMNA-based photoimmunotherapy synergized with PD-1 antibody could remarkably inhibit primary tumor proliferation, as well as stimulate the immunity to greatly suppress lung metastasis and distant tumor growth. This study offers an efficient method to reinforce the efficacy of phototherapy and alleviate immunosuppression, thereby bringing clinical benefits to cancer treatment.


Assuntos
Neoplasias do Colo , Imunoterapia , Micelas , Fototerapia , Polímeros , Receptor de Morte Celular Programada 1 , Animais , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Camundongos , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Polímeros/química , Linhagem Celular Tumoral , Fototerapia/métodos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologia , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Feminino , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Lipídeo A/análogos & derivados
16.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287867

RESUMO

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Obesidade , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Obesidade/metabolismo , Obesidade/enzimologia , Triptofano/metabolismo , Animais , Serotonina/metabolismo , Tecido Adiposo/metabolismo , Cinurenina/metabolismo
17.
Adv Exp Med Biol ; 1460: 919-954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287877

RESUMO

Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing ß-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.


Assuntos
COVID-19 , Síndrome de Ativação Macrofágica , Obesidade , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/complicações , Obesidade/complicações , Obesidade/metabolismo , Obesidade/epidemiologia , Obesidade/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Síndrome de Ativação Macrofágica/virologia , Síndrome de Ativação Macrofágica/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/virologia , Diabetes Mellitus Tipo 2/metabolismo , Pandemias , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia
18.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941676

RESUMO

Chronic inflammatory diseases like rheumatoid arthritis are characterized by a deficit in fully functional regulatory T cells. DNA-methylation inhibitors have previously been shown to promote regulatory T cell responses and, in the present study, we evaluated their potential to ameliorate chronic and acute animal models of rheumatoid arthritis. Of the drugs tested, decitabine was the most effective, producing a sustained therapeutic effect that was dependent on indoleamine 2,3-dioxygenase (IDO) and was associated with expansion of induced regulatory T cells, particularly at the site of disease activity. Treatment with decitabine also caused apoptosis of Th1 and Th17 cells in active arthritis in a highly selective manner. The molecular basis for this selectivity was shown to be ENT1, a nucleoside transporter, which facilitates intracellular entry of the drug and is up-regulated on effector T cells during active arthritis. It was further shown that short-term treatment with decitabine resulted in the generation of a population of regulatory T cells that were able to suppress arthritis upon adoptive transfer. In summary, a therapeutic approach using an approved drug is described that treats active inflammatory disease effectively and generates robust regulatory T cells with the IDO-dependent capacity to maintain remission.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Decitabina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/imunologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Indução de Remissão , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologia
19.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674162

RESUMO

The biologically significant phenomenon that the fetus can survive immune attacks from the mother has been demonstrated in mammals. The survival mechanism depends on the fetus and placenta actively defending themselves against attacks by maternal T cells, achieved through the localized depletion of the amino acid L-tryptophan by an enzyme called indoleamine 2,3-dioxygenase. These findings were entirely unexpected and pose important questions regarding diseases related to human pregnancy and their prevention during human pregnancy. Specifically, the role of this mechanism, as discovered in mice, in humans remains unknown, as does the extent to which impaired activation of this process contributes to major clinical diseases in humans. We have, thus, elucidated several key aspects of this enzyme expressed in the human placenta both in normal and abnormal human pregnancy. The questions addressed in this brief review are as follows: (1) localization and characteristics of human placental indoleamine 2,3-dioxygenas; (2) overall tryptophan catabolism in human pregnancy and a comparison of indoleamine 2,3-dioxygenase expression levels between normal and pre-eclamptic pregnancy; (3) controlling trophoblast invasion by indoleamine 2,3-dioxygenase and its relation to the pathogenesis of placenta accrete spectrum.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Placenta , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Gravidez , Feminino , Placenta/metabolismo , Placenta/enzimologia , Triptofano/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/enzimologia , Trofoblastos/metabolismo , Animais
20.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201612

RESUMO

Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFß at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFß in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Geleia de Wharton , Cães , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Geleia de Wharton/citologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Imunomodulação , Interferon gama/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Ativação Linfocitária/imunologia , Poli I-C/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA