Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30611538

RESUMO

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/ultraestrutura , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Ácido Bongcréquico/metabolismo , Citoplasma/metabolismo , Mitocôndrias/fisiologia , Translocases Mitocondriais de ADP e ATP/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(34): e2400912121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145930

RESUMO

Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD+-dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus Thermochaetoides thermophila. By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.


Assuntos
Domínio Catalítico , Inositol , Mio-Inositol-1-Fosfato Sintase , Mio-Inositol-1-Fosfato Sintase/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/química , Inositol/metabolismo , Inositol/química , Fosfatos de Inositol/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/química , Modelos Moleculares , Conformação Proteica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química
3.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
4.
J Biol Chem ; 299(9): 105159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579948

RESUMO

Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.


Assuntos
Proteínas de Ligação a Tacrolimo , Tacrolimo , Conformação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Sítios de Ligação , Amidas
5.
J Biol Chem ; 299(5): 104700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059184

RESUMO

Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , RNA , Ribonucleoproteínas , Edição de Genes , Filogenia , Ribonucleoproteínas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Dobramento de Proteína
6.
J Biol Chem ; 299(3): 103007, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775126

RESUMO

Pseudomonas aeruginosa couples the oxidation of d-2-hydroxyglutarate (D2HG) to l-serine biosynthesis for survival, using d-2-hydroxyglutarate dehydrogenase from P. aeruginosa (PaD2HGDH). Knockout of PaD2HGDH impedes P. aeruginosa growth, making PaD2HGDH a potential target for therapeutics. Previous studies showed that the enzyme's activity increased with Zn2+, Co2+, or Mn2+ but did not establish the enzyme's metal composition and whether the metal is an activator or a required cofactor for the enzyme, which we addressed in this study. Comparable to the human enzyme, PaD2HGDH showed only 15% flavin reduction with D2HG or d-malate. Upon purifying PaD2HGDH with 1 mM Zn2+, the Zn2+:protein stoichiometry was 2:1, yielding an enzyme with ∼40 s-1kcat for d-malate. Treatment with 1 mM EDTA decreased the Zn2+:protein ratio to 1:1 without changing the kinetic parameters with d-malate. We observed complete enzyme inactivation for the metalloapoenzyme with 100 mM EDTA treatment, suggesting that Zn2+ is essential for PaD2HGDH activity. The presence of Zn2+ increased the flavin N3 atom pKa value to 11.9, decreased the flavin ε450 at pH 7.4 from 13.5 to 11.8 mM-1 cm-1, and yielded a charged transfer complex with a broad absorbance band >550 nm, consistent with a Zn2+-hydrate species altering the electronic properties of the enzyme-bound FAD. The exogenous addition of Zn2+, Co2+, Cd2+, Mn2+, or Ni2+ to the metalloapoenzyme reactivated the enzyme in a sigmoidal pattern, consistent with an induced fit rapid-rearrangement mechanism. Collectively, our data demonstrate that PaD2HGDH is a Zn2+-dependent metallo flavoprotein, which requires Zn2+ as an essential cofactor for enzyme activity.


Assuntos
Malatos , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Ácido Edético , Oxirredução , Flavinas/metabolismo , Zinco , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
7.
Small ; 20(28): e2311181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361209

RESUMO

Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.

8.
Chemistry ; 30(20): e202302705, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179824

RESUMO

The detection of analytes with small molecular probes is crucial for the analysis and understanding of chemical, medicinal, environmental and biological situations as well as processes. Classic detection approaches rely on the concept of molecular recognition and bond formation reactions. Bond breakage reactions have been less explored in similar contexts. This concept article introduces metal-salen and metal-imine complexes as "covalent-disassembly"-based (DB)-probes for detecting polyoxophosphates, thiols, amino acids, HCN and changes in pH. It discusses the roles, importance and combinations of structurally functionalized molecular building blocks in the construction of DB-probes. Applications of optimized DB-probes for analyte detection in live cells and foodstuff are also discussed. Furthermore, the mechanism of the disassembly of a Fe(III)-salen probe upon pyrophosphate binding is presented. Extraordinary selectivity for this analyte was achieved by a multistep disassembly sequence including an unprecedented structural change of the metal complex (i. e. "induced-fit" principle). Design principles of probes for sensing applications following the "covalent-disassembly" approach are summarized, which will help improving current systems, but will also facilitate the development of new DB-probes for challenging analytic targets.


Assuntos
Complexos de Coordenação , Compostos Férricos , Compostos Férricos/química , Metais , Etilenodiaminas , Complexos de Coordenação/química
9.
J Enzyme Inhib Med Chem ; 39(1): 2309171, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38291670

RESUMO

New thymol-3,4-disubstitutedthiazole hybrids were synthesised as dual COX-2/5-LOX inhibitors. Compounds 6b, 6d, 6e, and 6f displayed in vitro inhibitory activity against COX-2 (IC50= 0.037, 0.042, 0.046, and 0.039 µM) nearly equal to celecoxib (IC50= 0.045 µM). 6b, 6d, and 6f showed SI (379, 341, and 374, respectively) higher than that of celecoxib (327). 6a-l elicited in vitro 5-LOX inhibitory activity higher than quercetin. 6a-f, 6i-l, 7a, and 7c possessed in vivo inhibition of formalin induced paw edoema higher than celecoxib. 6a, 6b, 6f, 6h-l, and 7b showed gastrointestinal safety profile as celecoxib and diclofenac sodium in the population of fasted rats. Induced fit docking and molecular dynamics simulation predicted good fitting of 6b and 6f without changing the packing and globularity of the apo protein. In conclusion, 6b and 6f achieved the target goal as multitarget inhibitors of inflammation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Timol , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Celecoxib , Timol/farmacologia , Tiazóis/farmacologia , Ciclo-Oxigenase 1/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Lipoxigenase/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
10.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063225

RESUMO

Tyramine (TRM) is a biogenic catecholamine neurotransmitter, which can trigger migraines and hypertension. TRM accumulated in foods is reduced and detected using additive cyclodextrins (CDs) while their association characteristics remain unclear. Here, single-crystal X-ray diffraction and density functional theory (DFT) calculation have been performed, demonstrating the elusive pseudopolymorphs in ß-CD inclusion complexes with TRM base/HCl, ß-CD·0.5TRM·7.6H2O (1) and ß-CD·TRM HCl·4H2O (2) and the rare α-CD·0.5(TRM HCl)·10H2O (3) exclusion complex. Both 1 and 2 share the common inclusion mode with similar TRM structures in the round and elliptical ß-CD cavities, belong to the monoclinic space group P21, and have similar herringbone packing structures. Furthermore, 3 differs from 2, as the smaller twofold symmetry-related, round α-CD prefers an exclusion complex with the twofold disordered TRM-H+ sites. In the orthorhombic P21212 lattice, α-CDs are packed in a channel-type structure, where the column-like cavity is occupied by disordered water sites. DFT results indicate that ß-CD remains elliptical to suitably accommodate TRM, yielding an energetically favorable inclusion complex, which is significantly contributed by the ß-CD deformation, and the inclusion complex of α-CD with the TRM aminoethyl side chain is also energetically favorable compared to the exclusion mode. This study suggests the CD implications for food safety and drug/bioactive formulation and delivery.


Assuntos
Tiramina , Tiramina/química , beta-Ciclodextrinas/química , Modelos Moleculares , Ciclodextrinas/química , alfa-Ciclodextrinas/química , Teoria da Densidade Funcional , Cristalografia por Raios X , Difração de Raios X
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000229

RESUMO

Binding affinity is a fundamental parameter in drug design, describing the strength of the interaction between a molecule and its target protein. Accurately predicting binding affinity is crucial for the rapid development of novel therapeutics, the prioritization of promising candidates, and the optimization of their properties through rational design strategies. Binding affinity is determined by the mechanism of recognition between proteins and ligands. Various models, including the lock and key, induced fit, and conformational selection, have been proposed to explain this recognition process. However, current computational strategies to predict binding affinity, which are based on these models, have yet to produce satisfactory results. This article explores the connection between binding affinity and these protein-ligand interaction models, highlighting that they offer an incomplete picture of the mechanism governing binding affinity. Specifically, current models primarily center on the binding of the ligand and do not address its dissociation. In this context, the concept of ligand trapping is introduced, which models the mechanisms of dissociation. When combined with the current models, this concept can provide a unified theoretical framework that may allow for the accurate determination of the ligands' binding affinity.


Assuntos
Desenho de Fármacos , Ligação Proteica , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Modelos Moleculares , Sítios de Ligação , Humanos
12.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999023

RESUMO

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Assuntos
Antituberculosos , Azetidinas , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Nitrofuranos , Compostos de Espiro , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Azetidinas/química , Azetidinas/farmacologia , Nitrofuranos/farmacologia , Nitrofuranos/química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Relação Estrutura-Atividade , Estrutura Molecular
13.
J Biol Chem ; 298(2): 101505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929170

RESUMO

Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane-based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s-1) and for sugar translocation (2 s-1 - 30 s-1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monossacarídeos , Simportadores , Metabolismo dos Carboidratos , Eletrofisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Açúcares/metabolismo , Simportadores/metabolismo
14.
J Biol Chem ; 298(5): 101901, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395245

RESUMO

Conformational flexibility in antibody-combining sites has been hypothesized to facilitate polyspecificity toward multiple unique epitopes and enable the limited germline repertoire to match an overwhelming diversity of potential antigens; however, elucidating the mechanisms of antigen recognition by flexible antibodies has been understandably challenging. Here, multiple liganded and unliganded crystal structures of the near-germline anticarbohydrate antibodies S25-2 and S25-39 are reported, which reveal an unprecedented diversity of complementarity-determining region H3 conformations in apparent equilibrium. These structures demonstrate that at least some germline or near-germline antibodies are flexible entities sensitive to their chemical environments, with conformational selection available as an evolved mechanism that preserves the inherited ability to recognize common pathogens while remaining adaptable to new threats.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Anticorpos/química , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Cristalografia por Raios X , Células Germinativas , Conformação Molecular , Conformação Proteica
15.
J Comput Chem ; 44(11): 1129-1137, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36625560

RESUMO

Macugen is a therapeutic RNA aptamer against vascular endothelial growth factor (VEGF)-165, the VEGF isoform primarily responsible for angiogenesis. It has been reported that Macugen inhibits angiogenesis by specifically binding to the heparin binding domain (HBD) of VEGF165. The mechanism of the molecular recognition between HBD and Macugen is investigated here using all-atom molecular dynamics simulations. We find that Macugen recognizes HBD by an induced-fit mechanism with major conformational changes in Macugen and almost no changes in the structure of HBD, whereas HBD recognizes Macugen by a conformational selection mechanism.


Assuntos
Aptâmeros de Nucleotídeos , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/química , Estrutura Terciária de Proteína , Aptâmeros de Nucleotídeos/química , Modelos Moleculares , Conformação de Ácido Nucleico , Biologia Computacional , Ligação Proteica
16.
Small ; 19(44): e2302677, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37357172

RESUMO

Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.

17.
Mol Pharm ; 20(1): 206-218, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36394563

RESUMO

L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.


Assuntos
Fenilalanina , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/metabolismo , Aminoácidos/química , Pró-Fármacos/química , Transporte Biológico
18.
Drug Dev Res ; 84(2): 185-199, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36469421

RESUMO

In an attempt to identify potent antitumor agents for the fight against non-small cell lung cancer, new thiazolyl hydrazones (2a-n) were synthesized and examined for their in vitro cytotoxic effects on A549 human lung adenocarcinoma and L929 mouse embryonic fibroblast cells by means of the MTT assay. Furthermore, the effects of the most potent anticancer agents on apoptosis and Akt inhibition were investigated. 2-[2-((Isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methylsulfonylphenyl)thiazole (2k) (IC50 = 1.43 ± 0.12 µM) and 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(1,3-benzodioxol-5-yl)thiazole (2l) (IC50 = 1.75 ± 0.07 µM) displayed more pronounced anticancer activity than cisplatin (IC50 = 3.90 ± 0.10 µM) on A549 cell lines; 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methoxyphenyl)thiazole (2j) (IC50 = 3.93 ± 0.06 µM) showed anticancer activity close to cisplatin. These compounds were found to induce apoptosis in A549 cells. Compound 2j (IC50 = 3.55 ± 0.64 µM) showed stronger Akt inhibitory activity than GSK690693 (IC50 = 4.93 ± 0.06 µM), while compounds 2k and 2l did not cause Akt inhibition at IC50 concentrations (1.43 and 1.75 µM, respectively). To comprehensively elucidate the binding pose of compound 2j and to provide a detailed understanding on the ligand' binding mechanism, induced-fit docking calculations were also conducted. Both in vitro and in silico studies suggest that compound 2j shows its cytotoxic and apoptotic effects on A549 cell lines via Akt inhibition. However, it is understood that compounds 2k and 2l exert their strong anticancer effects on A549 cells through different pathways.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt , Tiazóis/farmacologia , Tiazóis/química , Hidrazonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular , Linhagem Celular Tumoral
19.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445688

RESUMO

Immunoproteasome inhibition is a promising strategy for the treatment of hematological malignancies, autoimmune diseases, and inflammatory diseases. The design of non-covalent inhibitors of the immunoproteasome ß1i/ß5i catalytic subunits could be a novel approach to avoid the drawbacks of the known covalent inhibitors, such as toxicity due to off-target binding. In this work, we report the biological evaluation of thirty-four compounds selected from a commercially available collection. These hit compounds are the outcomes of a virtual screening strategy including a dynamic pharmacophore modeling approach onto the ß1i subunit and a pharmacophore/docking approach onto the ß5i subunit. The computational studies were first followed by in vitro enzymatic assays at 100 µM. Only compounds capable of inhibiting the enzymatic activity by more than 50% were characterized in detail using Tian continuous assays, determining the dissociation constant (Ki) of the non-covalent complex where Ki is also the measure of the binding affinity. Seven out of thirty-four hits showed to inhibit ß1i and/or ß5i subunit. Compound 3 is the most active on the ß1i subunit with Ki = 11.84 ± 1.63 µM, and compound 17 showed Ki = 12.50 ± 0.77 µM on the ß5i subunit. Compound 2 showed inhibitory activity on both subunits (Ki = 12.53 ± 0.18 and Ki = 31.95 ± 0.81 on the ß1i subunit and ß5i subunit, respectively). The induced fit docking analysis revealed interactions with Thr1 and Phe31 of ß1i subunit and that represent new key residues as reported in our previous work. Onto ß5i subunit, it interacts with the key residues Thr1, Thr21, and Tyr169. This last hit compound identified represents an interesting starting point for further optimization of ß1i/ß5i dual inhibitors of the immunoproteasome.


Assuntos
Doenças Autoimunes , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Domínio Catalítico , Fagocitose , Técnicas In Vitro , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677547

RESUMO

Currently, G protein-coupled receptors (GPCRs) constitute a significant group of membrane-bound receptors representing more than 30% of therapeutic targets. Fluorine is commonly used in designing highly active biological compounds, as evidenced by the steadily increasing number of drugs by the Food and Drug Administration (FDA). Herein, we identified and analyzed 898 target-based F-containing isomeric analog sets for SAR analysis in the ChEMBL database-FiSAR sets active against 33 different aminergic GPCRs comprising a total of 2163 fluorinated (1201 unique) compounds. We found 30 FiSAR sets contain activity cliffs (ACs), defined as pairs of structurally similar compounds showing significant differences in affinity (≥50-fold change), where the change of fluorine position may lead up to a 1300-fold change in potency. The analysis of matched molecular pair (MMP) networks indicated that the fluorination of aromatic rings showed no clear trend toward a positive or negative effect on affinity. Additionally, we propose an in silico workflow (including induced-fit docking, molecular dynamics, quantum polarized ligand docking, and binding free energy calculations based on the Generalized-Born Surface-Area (GBSA) model) to score the fluorine positions in the molecule.


Assuntos
Flúor , Simulação de Dinâmica Molecular , Flúor/química , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Isomerismo , Ligantes , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA