Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 102-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432065

RESUMO

Alfalfa Paraphoma root rot (APRR) (Paraphoma radicina) is a recently described alfalfa disease widely distributed in China, first reported in 2020. So far, the resistance levels of 30 alfalfa cultivars to APRR have been characterized; however, the resistance mechanisms among these cultivars remain unknown. In the present study, the alfalfa resistance mechanisms against APRR were investigated by studying the difference of P. radicina infecting susceptible (Gibraltar) and resistant (Magnum II) alfalfa cultivars under the light microscope and scanning electronic microscope. The conidial germination and germ tube growth in the root exudates of different resistant cultivars were also compared. The results revealed that conidial germination, germ tube development, and P. radicina penetration into root tissues of resistant plants were delayed. In susceptible and resistant cultivars, P. radicina infected roots by penetrating epidermal cells and the intercellular space between epidermal cells. During the infection process, germ tubes penetrated the root surface directly or formed appressoria. However, the penetration percentage on the susceptible cultivar was significantly higher than on the resistant cultivar, irrespective of the infection route. Moreover, disintegrated conidia and germ tubes were observed on resistant cultivar roots at 48 h postinoculation. The conidial germination and germ tube growth in root exudates of susceptible cultivars were significantly higher than in resistant cultivars. The current findings implied that the alfalfa resistance mechanism might be related to root exudates. These findings could provide insights into the alfalfa resistance mechanism following P. radicina infection.


Assuntos
Ascomicetos , Medicago sativa , Germinação , Doenças das Plantas
2.
Planta ; 259(1): 6, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001306

RESUMO

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Assuntos
Fabaceae , Rhizobium , Robinia , Robinia/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Genes vif , Fixação de Nitrogênio/genética , Rhizobium/fisiologia , Fabaceae/genética , Proteínas de Plantas/metabolismo
3.
Phytopathology ; 113(1): 70-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35876764

RESUMO

Southern blight caused by Sclerotium delphinii has a devastating effect on Dendrobium catenatum (an extremely valuable medicinal and food homologous Orchidaceae plant). However, the mechanisms underlying S. delphinii infection and D. catenatum response are far from known. Here, we investigated the infection process and mode of S. delphinii through microscopic observations of detached leaves and living plantlets and further explored the hormonal and metabolomic responses of D. catenatum during S. delphinii infection by using the widely targeted metabolome method. The results showed that S. delphinii infection involves two stages: a contact phase (12 to 16 h after inoculation) and a penetration stage (20 h after inoculation). S. delphinii hyphae could penetrate leaves directly (via swollen hyphae and the formation of an infection cushion) or indirectly (via stomatal penetration), causing water-soaked lesions on leaves within 24 to 28 h after inoculation and expanded thereafter. The content of jasmonates increased after the hyphal contact and remained at high levels during S. delphinii infection, whereas the ethylene precursor (1-aminocyclopropanecarboxylic acid) accumulated significantly after penetration. Furthermore, metabolites of the phenylpropanoid and flavonoid pathways were enriched after pathogen penetration, whereas several amino acids accumulated in significant amounts at the late stage of infection. Moreover, some other associated metabolites were significantly altered during pathogen infection. Therefore, the jasmonate, phenylpropanoid, flavonoid, and amino acid pathways could play crucial roles in D. catenatum resistance to S. delphinii infection. This study provides insight into the prevention and control of southern blight disease of D. catenatum.


Assuntos
Basidiomycota , Dendrobium , Dendrobium/química , Doenças das Plantas , Flavonoides
4.
Plant Dis ; 106(1): 289-296, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34515502

RESUMO

Rice false smut (RFS) is a destructive disease of rice worldwide caused by Ustilaginoidea virens. Nevertheless, there is a lack of efficient and stable artificial inoculation method to simulate the natural infection of U. virens, which is an important factor limiting further research on the pathogen. The purpose of this study was to establish an artificial inoculation method, which can simulate the natural infection process of U. virens without destroying the panicle sheath structure of rice. In this research, rice plants were inoculated by soaking roots at the seedling stage, spraying at the tillering stage, injecting at the booting stage, and again spraying at the flowering stage to determine the appropriate artificial inoculation time. Meanwhile, the panicle sheath instillation method and the injection inoculation method were compared. The results show that stages 6 to 8 of young panicle differentiation are an important period for U. virens infection. There were no significant differences in the mean rates of infected panicles, mean rates of infected grains, and maximum infected grains per panicle between the two inoculation methods. However, the frequency of RFS ball occurrence at the upper part of the panicles was significantly higher on the spikelets inoculated by the injection method than that of spikelets inoculated by natural infection and panicle sheath instillation. Therefore, panicle sheath instillation method was more similar to the natural infection of U. virens in the field. This research exhibited an innovative artificial inoculation method for identification of U. virens pathogenicity and evaluation of rice resistance against RFS.


Assuntos
Hypocreales , Oryza , Ustilaginales , Doenças das Plantas
5.
J Basic Microbiol ; 62(10): 1274-1286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35781725

RESUMO

Beauveria bassiana has been widely used as an important biological control fungus for agricultural and forest pests, and clarifying the interaction mechanism between B. bassiana and its host will help to better exert the efficacy of the mycoinsecticide. Here, we proposed a novel pattern analysis (PA) method for analyzing time-series data and applied it to a transcriptomic data set of B. bassiana infecting Galleria mellonella. We screened out 14 patterns including 868 genes, which had some characteristics that were not inferior to differentially expressed genes (DEGs). Compared with the previous analysis of this data set, we had three novel discoveries during B. bassiana infection, including overall downregulation of gene expression, the more critical first 24 h, and enrichment of regulatory functions of downregulated genes. Our new PA method promises to be an important complement to DEGs analysis for time-series transcriptomic data, and our findings enrich our knowledge of molecular mechanisms of fungal-host interactions.


Assuntos
Beauveria , Mariposas , Animais , Beauveria/genética , Beauveria/metabolismo , Interações Hospedeiro-Patógeno/genética , Insetos , Mariposas/genética , Mariposas/microbiologia , Transcriptoma
6.
Plant Dis ; 105(5): 1522-1530, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33237845

RESUMO

The prevalence and destructiveness of anthracnose, caused by Colletotrichum scovillei, in pepper production regions seriously affects pepper yield and quality. Mefentrifluconazole, the first of the isopropanol-azole subgroup of triazole fungicides, was introduced for the control of pepper anthracnose. However, the growth characteristics of pepper fruit and rapid spread of anthracnose suggest that the fungicide application method must be optimized to enhance fungicide efficacy. The sensitivity of C. scovillei to mefentrifluconazole was determined by mycelial growth and germ tube elongation assays using 157 single-spore isolates with mean 50% effective concentration values of 0.462 ± 0.138 and 0.359 ± 0.263 mg/liter, respectively. The in vivo data also showed that mefentrifluconazole had favorable protective and curative effects against pepper anthracnose. Mefentrifluconazole significantly affected C. scovillei infection on pepper by reducing appressorium formation and sporulation, shriveling spores and germ tubes, and causing the abnormal development of appressoria and conidiophores. Mefentrifluconazole could move acropetally, horizontally, and basipetally in pepper plants. Compared with a knapsack sprayer, mefentrifluconazole applied by mist sprayer exhibited significantly better activity against pepper anthracnose. Additionally, as the spray volume increased from 45 to 150 liters/ha, the control efficacy of mefentrifluconazole first increased and then tended to be steady, with an optimal spray volume of 90 liters/ha. The difference in disease control efficacy was related to the deposition and droplet distribution of mefentrifluconazole on the pepper fruit. These results provide scientific guidance for the application of mefentrifluconazole in pepper fields and improved fungicide utilization.


Assuntos
Colletotrichum , Fungicidas Industriais , Fluconazol/análogos & derivados , Fungicidas Industriais/farmacologia , Doenças das Plantas
7.
J Basic Microbiol ; 61(12): 1085-1097, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34490920

RESUMO

Coconut (Cocos nucifera L.) is one of the most important fruit trees in Bangladesh. This tree is susceptible to various pathogens. Among them, a fungus was consistently isolated from gray leaf spot symptom in coconut. This study aimed to isolate, characterize, and find the management strategies of the causal fungus of gray leaf spot disease in coconut. Both morphological and molecular characters identified the pathogen as Pestalotiopsis sp. for the first time in Bangladesh. Artificial inoculation of this fungus showed symptoms similar to those previously observed in the field. Cross-inoculation test suggests that Pestalotiopsis sp. has a wide host range. The infection process of Pestalotiopsis sp. started at 2 h after inoculation (hai) with the formation of germ tube followed by the formation of infection hyphae, which penetrated directly into the host at 6 hai. Gray leaf spot symptom was developed at 120 hai. Numerous conidia developed from the acervuli at 168 hai. These conidia acted as the source of inocula for secondary infection. The optimum temperature for the growth of Pestalotiopsis sp. was 25°C, however, the growth of Pestalotiopsis sp. ceased at 15°C and 35°C. This pathogen was completely inhibited by Autostin 50 WDG (carbendazim) at 100 ppm. Trichoderma viride (Pb-7) was found as the potential biocontrol agent against Pestalotiopsis sp. These findings could contribute to describing the disease cycle and epidemiology of Pestalotiopsis sp. that would ultimately require to undertake effective control measures against this pathogen.


Assuntos
Cocos , Pestalotiopsis , Bangladesh , Frutas , Doenças das Plantas
8.
Compr Rev Food Sci Food Saf ; 20(3): 2508-2533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33665962

RESUMO

Fruit-based diets have been adopted by the public worldwide because of their nutritional value. Many advances have also been made in the elucidation of host-pathogen interaction in the postharvest phase of fruits, in the hope of improving the management of diseases caused by pathogenic molds. In this study, we presented the molecular mechanisms by which pathogenic mold infects fruit in the postharvest phase, and focused on the knowledge gained from recent molecular techniques such as differential analysis of gene expression, targeted insertion, and mutagenesis. Current postharvest pathogenic fungal control strategies were then examined on the basis of their mechanisms for altering the infection process in order to explore new perspectives for securing fruit production. We found that biotechnological advances have led to an understanding of the new basic molecular processes involved in fruit fungal infection and to the identification of new genes, proteins and key factors that could serve as ideal targets for innovative antifungal strategies. In addition, the most commonly used steps to evaluate an approach to disrupt the fruit fungal infection process are mainly based on the inhibition of mycelial growth, spore germination, disruption of Adenosine triphosphate (ATP) synthesis, induction of oxidative stress, cell wall membrane damage, and inhibition of key enzymes. Finally, the alteration of the molecular mechanisms of signaling and response pathways to infection stimulation should also guide the development of effective control strategies to ensure fruit production.


Assuntos
Frutas , Micoses , Antifúngicos , Fungos , Interações Hospedeiro-Patógeno
9.
Plant Dis ; 104(2): 551-559, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31859594

RESUMO

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases affecting chili production. Disease control mainly relies on conventional fungicides, and repeated exposure to single-site mode-of-action fungicides may pose a risk for the development of resistant isolates within the population. Our previous study suggested that pyrisoxazole has strong inhibitory activity against C. scovillei in vitro. However, the effects of pyrisoxazole on the C. scovillei infection process and the performance of pyrisoxazole in the field remain unclear. In this study, pyrisoxazole exhibited strong inhibitory activity against the mycelial growth, appressorium formation, and appressorium diameter of C. scovillei, with half maximal effective concentration values of 0.1986, 0.0147, and 0.0269 µg/ml, respectively, but had no effect on sporulation, even at the highest concentration of 1.6 µg/ml. The baseline sensitivity curves were unimodal with a long right-hand tail. The in vivo data showed that pyrisoxazole provided both preventive and curative activity against anthracnose on chili. Pyrisoxazole decreased the incidence of anthracnose and reduced disease progress. The results of electron microscopy showed that pyrisoxazole can affect the C. scovillei infection process by altering mycelial morphology, degrading conidia and germ tubes, suppressing conidial germination and appressorium formation, and enhancing conidiophore production. Pyrisoxazole can be used to effectively control anthracnose under field conditions and increase chili yield; moreover, no phytotoxicity symptoms were observed after treatment. These results provide new insight into the mechanisms by which pyrisoxazole controls disease and suggest that pyrisoxazole is a feasible alternative for the management of anthracnose in chili.


Assuntos
Colletotrichum , Fungicidas Industriais , Infecções , Humanos , Doenças das Plantas , Esporos Fúngicos
10.
Planta ; 250(6): 1897-1910, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31485773

RESUMO

MAIN CONCLUSION: A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Nodulação/genética , Subunidades Ribossômicas Maiores/genética , Robinia/genética , Clonagem Molecular , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Subunidades Ribossômicas Maiores/fisiologia , Robinia/crescimento & desenvolvimento , Robinia/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma
11.
Fish Shellfish Immunol ; 94: 907-915, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31604147

RESUMO

Previous studies have demonstrated that white spot syndrome virus (WSSV) could induce hemocytes apoptosis in shrimps, however the inter-relationship between apoptotic process and the WSSV infection status is still currently underexplored. In the present work, the apoptosis and the viral proliferation in hemocytes of Litopenaeus vannamei were simultaneously investigated post WSSV infection by two-color immunofluorescence flow cytometry and real-time quantitative PCR. The apoptotic hemocytes of WSSV-infected shrimp was significantly increased at 12 h post infection (hpi), whereas underwent a slight decline at 24 hpi subsequently. Since 24 hpi, the apoptotic rate of hemocytes in the WSSV-infected shrimp exhibited a rapid and significant increase, and reached the peak level at 48 hpi with the ratio of 18.1 ±â€¯2.0%. Meanwhile, the percentage of WSSV-infected hemocytes and WSSV copies in hemocytes significantly increased at 24 hpi and maintained at a high level afterwards. With the rapid increase of hemocytes apoptosis, hemocyte density in hemolymph decreased dramatically to less than 20% of the mean value of control. Co-localization assay showed that the apoptotic WSSV-infected hemocytes occupied the dominant proportion of total apoptotic hemocytes, which reached the peak at 48 hpi with 12.6 ±â€¯1.5%. The expression profiles of seven pro-apoptotic genes and two apoptosis-inhibiting genes showed significant differential responses at different stages of WSSV infection, reflecting the interplay between the virus and the host immune response. Our results demonstrated that the apoptotic response of shrimp hemocytes could be significantly influenced by the WSSV infection process, which might provide an insight into deeper relationships between viral infection and apoptosis.


Assuntos
Apoptose , Proteínas de Artrópodes/genética , Hemócitos/imunologia , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/imunologia
12.
Exp Appl Acarol ; 75(1): 69-84, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611070

RESUMO

Isaria cateniannulata and Euseius nicholsi are two important biological control agents currently being used in many areas of China to control a variety of pests. In order to determine the possibility of a concomitant application with the two agents in a biocontrol program involving the two-spotted spider mite, Tetranychus urticae, we quantified the pathogenicity of a strain of I. cateniannulata (08XS-1) against females of both T. urticae and E. nicholsi. We observed the infection process using scanning electron microscopy and fluorescence microscopy to distinguish differences in fungal performance. The female mites were infected by I. cateniannulata at 2 × 107 conidia/ml. The mortality of T. urticae was 100% when treated with submerged conidia and 92% when treated with aerial conidia (spray), and that of E. nicholsi was 4.2 and 6.7%, correspondingly. Following infection with aerial or submerged conidia, mated E. nicholsi females displayed no significant differences between treatments and control, indicating the fungus had no obvious effect on their vitality and fertility. This demonstrates that I. cateniannulata is safe to E. nicholsi when used to control T. urticae. The two types of propagules of I. cateniannulata are readily produced by common culture, and the submerged conidia, because of their substantially higher mortality, are preferable to the aerial conidia. Our results indicate that I. cateniannulata and E. nicholsi are viable candidates to be concomitantly applied in the biocontrol programs of T. urticae.


Assuntos
Cordyceps/fisiologia , Cadeia Alimentar , Ácaros/microbiologia , Controle Biológico de Vetores , Controle de Ácaros e Carrapatos , Animais , Feminino , Especificidade da Espécie , Esporos Fúngicos , Tetranychidae/microbiologia
13.
World J Microbiol Biotechnol ; 34(12): 179, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30456633

RESUMO

Botryosphaeria kuwatsukai is an important fungal pathogen affecting pear fruits. However, infection processes of this fungus are still unclear. This study seeks to develop the fungal transformation of B. kuwatsukai by Agrobacterium tumefaciens-mediated transformation (ATMT), assess the reliability of appropriate vectors and examine the infection processes in vitro using a GFP labeled strain of B. kuwatsukai. To establish a highly effective transformation system in B. kuwatsukai, binary vectors containing various lengths of H3 promoters and TEF promoters fused with GFP and hygromycin B resistance gene cassettes were constructed. These cassettes were integrated into the genomic DNA of B. kuwatsukai with high transformation frequency by the ATMT method. Transformants showed strong expression of GFP and hygromycin B resistance genes in cells. Furthermore, we investigated if native promoters are more suitable to govern marker genes than other general promoters used in other filamentous fungi. The results obtained herein demonstrate that the vectors constructed in this study can be utilized with high transformation rate. Microscopic examinations also reveal that fungal hyphae undergo morphological changes during the infection process resulting in biotrophic stage of infected host cells. Our results provide genetic insights to further explore the infection processes of B. kuwatsukai.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Higromicina B/farmacologia , Regiões Promotoras Genéticas/genética , Pyrus/microbiologia , Transformação Genética , Agrobacterium tumefaciens/metabolismo , Antibacterianos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , DNA Bacteriano/genética , DNA Fúngico , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/genética , Marcadores Genéticos , Vetores Genéticos , Doenças das Plantas/prevenção & controle , Virulência
14.
BMC Genomics ; 17(Suppl 8): 736, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27801295

RESUMO

BACKGROUND: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). RESULTS: Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. CONCLUSIONS: Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.


Assuntos
Genoma Fúngico , Genômica , Metarhizium/genética , Metarhizium/metabolismo , Metabolismo Secundário/genética , Transcriptoma , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genômica/métodos , Interações Hospedeiro-Patógeno , Metarhizium/classificação , Filogenia , Característica Quantitativa Herdável , Carrapatos/microbiologia
15.
J Invertebr Pathol ; 130: 147-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26264671

RESUMO

Isaria fumosorosea is an important pathogen of whiteflies, and is used as a mycoinsecticide against this pest in many regions of the world. We quantified the pathogenicity of the Chinese isolate IF-1106 against different life stages of sweetpotato whitefly, Bemisia tabaci, on cucumber plants, and describe the infection process and aspects of the host immunological response in the laboratory. The second instar was the most susceptible life stage to infection, with mortality rates at 10(7)conidia/ml ≈83% after 7d. Scanning electron microscopy was used to monitor morphological aspects of the infection process. The following stages were observed; conidia adhered on the cuticle of B. tabaci and began to germinate within 6h of inoculation, appressoria development after 24h, germ tube penetration within 48h, emergent hyphae within 72h, secondary conidiogenesis within 96h with mass hyphal proliferation occurring on cadavers within 120h. The activities of endogenous enzymes were evaluated from host homogenate at various intervals post infection. Three enzymes associated with antioxidant activity [superoxide dismutase (SOD), perioxidase (POD), and catalase (CAT)], and two with detoxification [glutathione S-transferase (GSTs) and carboxylesterase (CarE)] were apparently upregulated in second instars infected by I. fumosorosea. Enzyme activities reached peak values at 48-60h post infection, then decreased to significantly lower than controls in 84h as mycosis occurred. Our results provide new insights into the pathogenicity and potential physiological response of B. tabaci to this fungal isolate.


Assuntos
Hemípteros/parasitologia , Hypocreales/patogenicidade , Controle Biológico de Vetores/métodos , Animais , Hemípteros/imunologia , Interações Hospedeiro-Parasita/imunologia , Hypocreales/imunologia , Virulência
16.
Front Microbiol ; 15: 1344831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585697

RESUMO

Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.

17.
Pest Manag Sci ; 80(8): 3786-3794, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483148

RESUMO

BACKGROUND: Barnyardgrass (Weed Science Society of America recommended) or Barnyard grass (Britannica recommended) (Echinochloa crus-galli (L.) P. Beauv.) is one of the most problematic and dominant weeds in world agricultural systems, especially in paddy fields, where tillering and grain yield can be reduced by 50-70% because of its competitive pressure. The frequent use of chemical herbicides to control E. crus-galli has led to the evolution of herbicide resistance. Developing bioherbicides using pathogenic fungi to control E. crus-galli could be an alternative option. RESULTS: In a previous study we showed that a strain of Bipolaris yamadae (HXDC-1-2) was promising in controlling gramineous weeds. Here we present a study that evaluated this fungus as a mycoherbicide against E. crus-galli in greenhouse and paddy fields, characterized mycelium growth and conidial production, and examined the infection development. The median effective dose (ED50) and 90% effective dose (ED90) values of microcapsulated B. yamadae strain HXDC-1-2 on E. crus-galli in the greenhouse were 7.17 × 102 and 9.35 × 103 conidia mL-1, respectively. Conidial germination, mycelial growth, and attachment formation occurred on E. crus-galli leaves within 1 to 6 h. The hyphae directly invaded cells and stomata, primarily from the appressorium on the epidermis, and necrotic lesions were observed on the leaf surface within 20 to 24 h. Applied to E. crus-galli plants at 1 × 105 conidia mL-1, the fungus reduced the weed's fresh weight of 75%. CONCLUSION: B. yamadae strain HXDC-1-2 has the potential to be developed as a bioherbicide against E. crus-galli plants, especially in rice fields. © 2024 Society of Chemical Industry.


Assuntos
Bipolaris , Echinochloa , Oryza , Plantas Daninhas , Controle de Plantas Daninhas , Echinochloa/efeitos dos fármacos , Echinochloa/crescimento & desenvolvimento , Oryza/microbiologia , Controle de Plantas Daninhas/métodos , Plantas Daninhas/efeitos dos fármacos , Bipolaris/efeitos dos fármacos , Controle Biológico de Vetores , Herbicidas/farmacologia
18.
Pathogens ; 12(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678452

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas disease, a parasitic disease of great medical importance on the American continent. Trypomastigote infection's initial step in a mammalian host is vital for the parasite's life cycle. A trypomastigote's surface presents many molecules, some of which have been proposed to be involved in the infection process, including a glycoprotein family called mucin-associated surface proteins (MASPs). This work describes a 49-kDa molecule (MASP49) that belongs to this family and is expressed mainly on the surfaces of amastigotes and trypomastigotes but can be found in extracts and the membrane-enriched fractions of epimastigotes. This protein is partially GPI-anchored to the surface and has a role during the internalization process, since its blockade with specific antibodies decreases parasite entry into Vero cells by 62%. This work shows that MASP49 binds to peritoneal macrophages and rat cardiomyocytes, undergoes glycosylation via galactose N-acetylgalactosamine, and can attach to the macrophage murine C-type lectin receptor (mMGL). These results suggest that MASP49 can be considered a virulence factor in T. cruzi, and a better understanding of its role in the infection process is necessary.

19.
Insects ; 14(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999059

RESUMO

Aphis craccivora (Hemiptera: Aphididae) is an important pest affecting various crops worldwide. However, only few studies have been conducted on the infection of A. craccivora by Lecanicillium and related insecticidal mechanisms. We investigated the infection process of A. craccivora by Lecanicillium araneicola HK-1 using fluorescence microscopy and scanning electron microscopy (SEM), and our results indicated that the conidia of strain HK-1 easily attached to the feet and dorsum of A. craccivora. The activities of chitinase and extracellular protease were induced in the aphid after treatment with HK-1. A bioassay on A. craccivora showed that the median lethal concentration (LC50) of the fungus crude extract was 24.00 mg mL-1 for 24 h of treatment. Additionally, the results showed that the crude extract disrupted the enzyme system of A. craccivora, inducing the inhibition of carboxylesterase (CarE) and the induction of glutathione S-transferase (GST) and acetylcholinesterase (AChE). Combining these results with those of a gas chromatography-mass spectrometry (GC-MS) analysis, it is suggested that p-cymene, hymecromone, 9,12-octadecadienoic acid (Z, Z) methyl ester, and 9,12-octadecadienoic acid (Z, Z) may be connected to the insecticidal effects we observed. This study provides a theoretical basis for the use of L. araneicola HK-1 as a potential biological control agent.

20.
Front Microbiol ; 14: 1228597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637108

RESUMO

Introduction: Rice false smut caused by Ustilaginoidea virens, is a destructive fungal disease encountered in many rice-producing areas worldwide. To determine the process by which U. virens infects rice spikelets in the field. Methods: The green fluorescent protein-labeled U. virens was used as an inoculum to conduct artificial inoculation on rice at the booting stage via non-destructive panicle sheath instillation inoculation. Results: The results showed that the conidia of U. virens germinated on the surface of rice glumes and produced hyphae, which clustered at the mouth of rice glumes and entered the glumes through the gap between the palea and lemma. The conidia of U. virens colonized in rice floral organs, which led to pollen abortion of rice. U. virens wrapped the whole rice floral organ, and the floral organ-hyphae complex gradually expanded to open the glumes to form a rice false smut ball, which was two to three times larger than that observed in normal rice. Discussion: Panicle sheath instillation inoculation was shown to be a non-destructive inoculation method that could simulate the natural infection of U. virens in the field. The entire infection process of U. virens was visualized, providing a theoretical reference for formulating strategies to control rice false smut in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA