RESUMO
Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Proteólise , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Engenharia Genética , Humanos , Insetos/fisiologia , Modelos Biológicos , Fenótipo , Fotoperíodo , Filogenia , Phytoplasma/fisiologia , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Reprodução , Nicotiana , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
Assuntos
Fenóis/farmacologia , Peste/metabolismo , Tiazóis/farmacologia , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Feminino , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fenóis/metabolismo , Peste/microbiologia , Sideróforos/metabolismo , Tiazóis/metabolismo , Virulência , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidadeRESUMO
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are hematophagous insects, and some species can transmit a plethora of pathogens, e.g., bluetongue virus and African horse sickness virus, that mainly affect animals. The transmission of vector-borne pathogens is strongly temperature dependent, and recent studies pointed to the importance of including microclimatic data when modelling disease spread. However, little is known about the preferred temperature of biting midges. The present study addressed the thermal selection of field-caught Culicoides with two experiments. In a laboratory setup, sugar-fed or blood-fed midges were video tracked for 15 min while moving inside a 60 × 30 × 4 cm setup with a 15-25 °C temperature gradient. Culicoides spent over double the time in the coldest zone of the setup compared to the warmest one. This cold selection was significantly stronger for sugar-fed individuals. Calculated preferred temperatures were 18.3 °C and 18.9 °C for sugar-fed and blood-fed Culicoides, respectively. The effect of temperature on walking speed was significant but weak, indicating that their skewed distribution results from preference and not cold trapping. A second experiment consisted of a two-way-choice-setup, performed in a 90 × 45 × 45 cm net cage, placed outdoors in a sheltered environment. Two UV LED CDC traps were placed inside the setup, and a mean temperature difference of 2.2 °C was created between the two traps. Hundred-fifty Culicoides were released per experiment. Recapture rates were negatively correlated with ambient temperature and were on average three times higher in the cooled trap. The higher prevalence of biting midges in cooler environments influences fitness and ability to transmit pathogens and should be considered in models that predict Culicoides disease transmission.
Assuntos
Vírus da Doença Equina Africana , Ceratopogonidae , Humanos , Animais , Insetos Vetores , Meio Ambiente , AçúcaresRESUMO
To evaluate population fluctuations in relation to weather parameters and biorational management of sucking insect vectors in chili (Capsicum annuum L.), we conducted a study at the experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, in 2020 and 2021. It has been shown in this study that sucking insects (aphids, jassids, whiteflies, and thrips) were active throughout the study period. The highest count of sucking insect vectors (24.67 aphids, 13.72 whitefly, and 56.56 thrips) in March and (14.83 jassid) in April was recorded at average temperatures of 34-36°C and 31°C, respectively. There was a positive correlation between pest abundance and temperature, relative humidity, and rainfall for all insects, with the exception of a negative correlation between whiteflies and temperature and rainfall. The results of linear regression models showed that abiotic factors contribute to pest abundance levels, with 100R2 values of 14.9 (thrips), 46.3 (jassids), 7.1 (whiteflies), and 0.67 (aphids); the results were statistically significant for all models in the case of thrips, jassids, and whiteflies, but not significant in the case of aphids. The most effective treatment was spinosad 45SC, a bacterium-derived pesticide recommended for the control of sucking insect vector complexes in chili. The results from the spinosad-treated plot, in terms of insect counts and corresponding mortality rates, were as follows: aphids (3.68), 68.89%; jassids (3.52), 72.01%; whiteflies (3.00), 66.69%; and thrips (3.40), 69.20%. The results of this study will aid in developing predictive models of different control agents against sucking insect vectors in vegetable crops.
Assuntos
Afídeos , Capsicum , Tisanópteros , Animais , Bangladesh , Insetos , Dinâmica Populacional , Insetos VetoresRESUMO
Climate change has increased the risk for infection of crops with insect-transmitted viruses. Mild autumns provide prolonged active periods to insects, which may spread viruses to winter crops. In autumn 2018, green peach aphids (Myzus persicae) were found in suction traps in southern Sweden that presented infection risk for winter oilseed rape (OSR; Brassica napus) with turnip yellows virus (TuYV). A survey was carried out in spring 2019 with random leaf samples from 46 OSR fields in southern and central Sweden using DAS-ELISA, and TuYV was detected in all fields except one. In the counties of Skåne, Kalmar, and Östergötland, the average incidence of TuYV-infected plants was 75%, and the incidence reached 100% for nine fields. Sequence analyses of the coat protein gene revealed a close relationship between TuYV isolates from Sweden and other parts of the world. High-throughput sequencing for one of the OSR samples confirmed the presence of TuYV and revealed coinfection with TuYV-associated RNA. Molecular analyses of seven sugar beet (Beta vulgaris) plants with yellowing, collected in 2019, revealed that two of them were infected by TuYV, together with two other poleroviruses: beet mild yellowing virus and beet chlorosis virus. The presence of TuYV in sugar beet suggests a spillover from other hosts. Poleroviruses are prone to recombination, and mixed infection with three poleroviruses in the same plant poses a risk for the emergence of new polerovirus genotypes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Assuntos
Brassica napus , Luteoviridae , Doenças das Plantas , Luteoviridae/genética , Produtos Agrícolas , AçúcaresRESUMO
Climate change is impacting agriculture in many ways, and a contribution from all is required to reduce the imminent losses related to it. Recently, it has been shown that citizen science could be a way to trace the impact of climate change. However, how can citizen science be applied in plant pathology? Here, using as an example a decade of phytoplasma-related diseases reported by growers, agronomists, and citizens in general, and confirmed by a government laboratory, we explored how to better value plant pathogen monitoring data. Through this collaboration, we found that in the last decade, 34 hosts have been affected by phytoplasmas; 9, 13, and 5 of these plants were, for the first time, reported phytoplasma hosts in eastern Canada, all of Canada, and worldwide, respectively. Another finding of great impact is the first report of a 'Candidatus Phytoplasma phoenicium'-related strain in Canada, while 'Ca. P. pruni' and 'Ca. P. pyri' were reported for the first time in eastern Canada. These findings will have a great impact on the management of phytoplasmas and their insect vectors. Using these insect-vectored bacterial pathogens, we show the need for new strategies that can allow fast and accurate communication between concerned citizens and those institutions confirming their observations.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ciência do Cidadão , Phytoplasma , Phytoplasma/genética , CanadáRESUMO
Lethal bronzing (LB) and huanglongbing (HLB) are harmful plant diseases causing significant economic losses in Florida agriculture. Both diseases are caused by bacteria that are transmitted by Hemipteran insect vectors. Accurate detection of pathogens within insect vectors can help provide a better understanding of disease epidemiology. Monitoring of the vector of LB is done primarily using sticky traps within palm canopies. However, it is unknown how long pathogen and vector DNA remain intact under field conditions. If significant DNA degradation takes place over the course of days or weeks, there is a possibility of false negatives occurring when detecting pathogens from these surveys. This study determined how long Haplaxius crudus Van Duzee (Hemiptera: Cixiidae) and LB DNA could remain detectable on sticky traps under field conditions in Florida in winter and summer, using PCR and qPCR. Additionally, this study compared the DNA degradation of Diaphorina citri Kuwayama (Hemiptera: Liviidae) and Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. The results showed that DNA concentration and amplification rate declined as time on sticky traps increased. Degradation varied between different target genes. The amplification rate of insect genes from sticky trap samples suggests that sticky traps should be changed weekly in summer, and every 2 wk in winter for accurate H. crudus detection. Traps should be changed every 4 days for phytoplasma detection. Traps can be changed monthly for accurate D. citri and CLas detection. Based on these results, standard monitoring protocols can be implemented to more accurately detect vectors and pathogens.
Assuntos
Citrus , Hemípteros , Animais , Hemípteros/microbiologia , Florida , Reação em Cadeia da Polimerase , Doenças das Plantas/microbiologiaRESUMO
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Assuntos
Enterobacteriaceae , Enterobacteriaceae/genética , Humanos , Filogenia , SíndromeRESUMO
Mulberry crinkle leaf virus (MCLV) is a novel geminivirus identified from mulberry. The pathogenicity and natural vector transmission of MCLV remain unknown. Here, infectious clones consisting of the complete tandem dimeric genome of MCLV in a binary vector were constructed and agroinoculated into young mulberry plants. The results showed that the infectious clones of MCLV were systemically infectious in mulberry, but the infected mulberry plants did not show any virus infection-like symptoms. The natural transmission vectors of MCLV were also identified from possible vector insects occurring on the MCLV-infected mulberry plants. The vector ability of Tautoneura mori was identified through an inoculation assay. Three of 21 (14.3%) plants inoculated with T. mori collected from MCLV-infected mulberry plants grown naturally were found to be MCLV-positive 50 days postinoculation. These MCLV-positive mulberry plants did not show any virus infection-like symptoms. Collectively, these results suggest that MCLV is infectious to mulberry plants but, by itself, does not induce infection symptoms. The leafhopper T. mori was experimentally determined to be a transmission vector of MCLV for the first time.
Assuntos
Geminiviridae , Hemípteros , Morus , Animais , Células Clonais , Geminiviridae/genética , Doenças das PlantasRESUMO
The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across nonconcordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.
Assuntos
Anopheles/genética , Dieldrin , Evolução Molecular , Introgressão Genética , Animais , Inversão Cromossômica , Proteínas de Drosophila , Haplótipos , Resistência a Inseticidas/genética , Mutação , Receptores de GABA-A , Seleção GenéticaRESUMO
Nowadays, we are tackling various issues related to the overuse of synthetic insecticides. Growing concerns about biodiversity, animal and human welfare, and food security are pushing agriculture toward a more sustainable approach, and research is moving in this direction, looking for environmentally friendly alternatives to be adopted in Integrated Pest Management (IPM) protocols. In this regard, inert dusts, especially diatomaceous earths (DEs), hold a significant promise to prevent and control a wide range of arthropod pests. DEs are a type of naturally occurring soft siliceous sedimentary rock, consisting of the fossilized exoskeleton of unicellular algae, which are called diatoms. Mainly adopted for the control of stored product pests, DEs have found also their use against some household insects living in a dry environment, such as bed bugs, or insects of agricultural interest. In this article, we reported a comprehensive review of the use of DEs against different arthropod pest taxa, such as Acarina, Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, Ixodida, Lepidoptera, when applied either alone or in combination with other techniques. The mechanisms of action of DEs, their real-world applications, and challenges related to their adoption in IPM programs are critically reported.
Assuntos
Artrópodes/efeitos dos fármacos , Terra de Diatomáceas/farmacologia , Controle de Insetos , Inseticidas/farmacologia , Animais , Terra de Diatomáceas/química , Inseticidas/químicaRESUMO
Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen-containing compounds, and fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate, and methyl salicylate. Given the general antimicrobial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defence against pathogens without much solid evidence. In this review, we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria, and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighbouring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions, which stimulate immune responses that make plants more susceptible to infection. Although much more is known about plant volatile-herbivore interactions, knowledge of volatile-microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant-herbivore interactions.
Assuntos
Doenças das Plantas/imunologia , Plantas/imunologia , Plantas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Vias Biossintéticas , Resistência à Doença , Fungos/efeitos dos fármacos , Herbivoria , Interações Microbianas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Terpenos , Vírus/efeitos dos fármacos , Compostos Orgânicos Voláteis/imunologiaRESUMO
BACKGROUND: One of the most important causative agents of visceral leishmaniasis (VL) is Leishmania infantum, which is mainly spread by Phlebotomus and Lutzomyia sandflies in the Old and New World, respectively. Novel and effective drugs to manage this neglected vector-borne disease are urgently required. In this study, we evaluated the toxicity of carvacrol, thymol and linalool, three common essential oil constituents, on amastigotes and promastigotes of L. infantum. Methods: in vitro experiments were performed by 24 h MTT assay. Carvacrol, thymol and linalool at concentrations ranging from 1.3 to 10 µg/mL were tested on promastigotes of L. infantum. For in vivo test, two groups of hamsters (Mesocricetus auratus) received 100 mg/kg of body weight/day of carvacrol and thymol as intraperitoneal injection on day 7 post-infection, followed by a 48 h later injection. The third group was treated with the glucantime as standard drug (500 mg/kg) and the last group (control) just received normal saline. On the 16th day, the number of parasites and histopathological changes in liver and spleen were investigated. RESULTS: 24 h MTT assay showed promising antileishmanial activity of thymol and carvacrol, with IC50 values of 7.2 (48 µM) and 9.8 µg/mL (65 µM), respectively. Linalool at all concentrations did not affect L. infantum promastigote viability. In vivo toxicity data of carvacrol and thymol showed that the former at 100 mg/kg was the safest and most effective treatment with little side effects on the liver. CONCLUSIONS: Overall, thymol and carvacrol are highly promising candidates for the development of effective and safe drugs in the fight against VL.
Assuntos
Leishmania infantum/efeitos dos fármacos , Monoterpenos/farmacologia , Timol/farmacologia , Tripanossomicidas/farmacologia , Monoterpenos Acíclicos , Animais , Cricetinae , Cimenos , Modelos Animais de Doenças , Concentração Inibidora 50 , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Fígado/patologia , Masculino , Testes de Sensibilidade ParasitáriaRESUMO
RVV Plant virology meeting (January 27-31, 2019, Aussois, France) allows researchers, engineers, technicians, students and post-docs to exchange around oral and poster presentations. These convivial meetings are 30 years old and have a nice future.
Assuntos
Doenças das Plantas/virologia , Patologia Vegetal , Vírus de Plantas/fisiologia , Animais , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Congressos como Assunto , Vetores de Doenças , França , História do Século XXI , Interações Hospedeiro-Parasita/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Insetos/fisiologia , Insetos/virologia , Patologia Vegetal/história , Patologia Vegetal/organização & administração , Patologia Vegetal/tendências , Sociedades Médicas/história , Sociedades Médicas/organização & administração , Sociedades Médicas/tendênciasRESUMO
BACKGROUND: Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O'nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. RESULTS: We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei. Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection. CONCLUSIONS: ONNV infection of the A. coluzzii midgut triggers a remarkably limited gene regulation program of mostly novel candidate genes, which likely includes host genes deployed for antiviral defense, as well as genes manipulated by the virus to facilitate infection. Functional dissection of the ONNV-response candidate genes is expected to generate novel insight into the mechanisms of virus-vector interaction.
Assuntos
Anopheles/genética , Arbovírus/patogenicidade , Mucosa Intestinal/metabolismo , Transcriptoma , Animais , Anopheles/metabolismo , Anopheles/virologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Mucosa Intestinal/virologia , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Componente Principal , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNARESUMO
Pathogenic soft rot Enterobacteriaceae (SRE) belonging to the genera Pectobacterium and Dickeya cause diseases in potato and numerous other crops. Seed potatoes are the most important source of infection, but how pathogen-free tubers initially become infected remains an enigma. Since the 1920s, insects have been hypothesized to contribute to SRE transmission. To validate this hypothesis and to map the insect species potentially involved in SRE dispersal, we have analyzed the occurrence of SRE in insects recovered from potato fields over a period of 2 years. Twenty-eight yellow sticky traps were set up in 10 potato fields throughout Norway to attract and trap insects. Total DNA recovered from over 2,000 randomly chosen trapped insects was tested for SRE, using a specific quantitative PCR (qPCR) TaqMan assay, and insects that tested positive were identified by DNA barcoding. Although the occurrence of SRE-carrying insects varied, they were found in all the tested fields. While Delia species were dominant among the insects that carried the largest amount of SRE, more than 80 other SRE-carrying insect species were identified, and they had different levels of abundance. Additionally, the occurrence of SRE in three laboratory-reared insect species was analyzed, and this suggested that SRE are natural members of some insect microbiomes, with herbivorous Delia floralis carrying more SRE than the cabbage moth (Plutella xylostella) and carnivorous green lacewing larvae (Chrysoperla carnea). In summary, the high proportion, variety, and ubiquity of insects that carried SRE show the need to address this source of the pathogens to reduce the initial infection of seed material.IMPORTANCE Soft rot Enterobacteriaceae are among the most important pathogens of a wide range of vegetables and fruits. The bacteria cause severe rots in the field and in storage, leading to considerable harvest losses. In potato, efforts to understand how soft rot bacteria infect and spread between healthy plants have been made for over a century. Early on, fly larvae were implicated in the transmission of these bacteria. This work aimed at investigating the occurrence of soft rot bacteria in insects present in potato fields and at identifying the species of these insects to better understand the potential of this suspected source of transmission. In all tested potato fields, a large proportion of insects were found to carry soft rot bacteria. This suggests a need to give more weight to the role of insects in soft rot ecology and epidemiology to design more effective pest management strategies that integrate this factor.
Assuntos
Enterobacteriaceae/isolamento & purificação , Insetos/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Animais , Código de Barras de DNA Taxonômico , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Insetos/classificação , Microbiota , Noruega , Pectobacterium/genética , Pectobacterium/isolamento & purificação , Pectobacterium/patogenicidade , Controle de Pragas , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Six novel yeast species, Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., Starmerella opuntiae f.a., sp. nov., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a, sp. nov. are proposed to accommodate 19 isolates recovered from ephemeral flowers or bees in Brazil, Costa Rica and Belize. Sequence analysis of the ITS-5.8S region (when available) and the D1/D2 domains of the large subunit of the rRNA gene showed that the six novel yeasts are phylogenetically related to several species of the Starmerella clade. The type strains are Starmerella camargoi f.a., sp. nov. UFMG-CM-Y595T (=CBS 14130T; Mycobank number MB 822640), Starmerella ilheusensis f.a., sp. nov. UFMG-CM-Y596T (=CBS CBS14131T; MB 822641), Starmerella litoralis f.a., sp. nov. UFMG-CM-Y603T (=CBS14104T; MB 822642), Starmerella opuntiae f.a., sp. nov. UFMG-CM-Y286T (=CBS 13466T; MB 822643), Starmerella roubikii f.a., sp. nov. UWOPS 01-191.1 (=CBS 15148; MB 822645) and Starmerella vitae f.a., sp. nov. UWOPS 00-107.2 (=CBS 15147T; MB 822646). In addition, 25 species currently assigned to the genus Candida are reassigned formally to the genus Starmerella.
Assuntos
Abelhas/microbiologia , Flores/microbiologia , Filogenia , Saccharomycetales/classificação , Animais , Belize , Brasil , Candida/classificação , Costa Rica , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNARESUMO
The apparent scarcity or absence of blood parasites in some avian groups, such as seabirds, has been related to intrinsic and extrinsic factors including host immunological capacity, host-parasite assemblage, and ecological parameters, but also to reduced sensitivity of some methods to detect low parasite prevalence/intensities of infection. Here, we examined the haemosporidian parasite prevalence in a breeding population of Cory's shearwater Calonectris diomedea borealis, a long-distance migrant seabird, nesting in the Macaronesian region, in the Eastern Atlantic. Previous studies on Calonectris diomedea complex were based on small sample sizes providing weak evidence for a lack of infections by haemoparasites. Here, we investigated the presence of both parasite infections in C. d. borealis and larvae of potential mosquito vectors on the area. By employing a PCR-based assay, we extensively examined the prevalence of blood parasites belonging to the genera Plasmodium, Haemoproteus, and Leucocytozoon in 286 individuals from different life stages (i.e., chicks, immatures, sabbatical, and breeding adults), facing their specific energetic trade-offs (immunological functions vs. life history activities). We sampled immatures and adult shearwaters, of different sexes, ages, and migratory origins, from two sub-colonies. None of the sampled individuals were infected by these parasites, supporting the hypothesis that there was no in situ or ex situ transmission of vector-borne parasites in marine habitats irrespective of host's life stage and in spite of the presence of the potential Plasmodium vector Culiseta longiareolata breeding in the area. These results suggest that the lack of transmission of haemosporidian parasites on Selvagem Grande may be related to the lack of suitable dipteran vectors at the study sites, which may result from the geographic isolation of this area.
Assuntos
Doenças das Aves/parasitologia , Haemosporida/isolamento & purificação , Infecções por Protozoários/parasitologia , Animais , Doenças das Aves/epidemiologia , Aves , Cruzamento , Ecossistema , Feminino , Haemosporida/classificação , Haemosporida/genética , Masculino , Infecções por Protozoários/epidemiologiaRESUMO
Host choice by mosquitoes affects the transmission dynamics of vector-borne infectious diseases. Although asymmetries in mosquito attraction to vertebrate species have been reported, the relative importance of host characteristics in mosquito blood-feeding behavior is still poorly studied. Here, we investigate the relationship between avian phenotypic traits-in particular, morphometry, plumage coloration, and nesting and roosting behavior-and the blood-feeding patterns in two common Culex mosquito species on a North American avian community. Forage ratios of the mosquito species were unrelated to the phylogenetic relationships among bird species. Culex pipiens fed preferably on birds with lighter-colored plumage and longer tarsi; furthermore, solitary roosting avian species were both bitten by Cx. pipiens and Cx. restuans more often than expected. These associations may be explained by greater mosquito attraction towards larger birds with a greater color contrast against the background. Although communally roosting birds may release more cues and attract more mosquitoes, individuals may in fact receive fewer bites due to the encounter-dilution effect. Mosquito feeding behavior is a highly complex phenomenon, and our results may improve understanding of the non-random interaction between birds and mosquitoes in natural communities.
Assuntos
Culex , Animais , Aves , Comportamento Alimentar , Insetos Vetores , FilogeniaRESUMO
Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.