Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 38(8): 936-947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32374064

RESUMO

Huntington's disease (HD) is a devastating, autosomal-dominant neurodegenerative disease, for which there are currently no disease-modifying therapies. Clinical trials to replace the damaged striatal medium spiny neurons (MSNs) have been attempted in the past two decades but have met with only limited success. In this study, we investigated whether a clonal, conditionally immortalized neural stem cell line (CTX0E03), which has already shown safety and signals of efficacy in chronic ischemic stroke patients, could rescue deficits seen in an animal model of HD. After CTX0E03 transplantation into the quinolinic acid-lesioned rat model of HD, behavioral changes were measured using the rotarod, stepping, and staircase tests. In vivo differentiation and neuronal connections of the transplanted CTX0E03 cells were evaluated with immunohistochemical staining and retrograde tracing with Fluoro-Gold. We found that transplantation of CTX0E03 gave rise to a significant behavioral improvement compared with the sham- or fibroblast-transplanted group. Transplanted CTX0E03 formed MSNs (DARPP-32) and GABAergic neurons (GABA, GAD65/67) with BDNF expression in the striatum, while cortically transplanted cells formed Tbr1-positive neurons. Using a retrograde label, we also found stable engraftment and connection of the transplanted cells with host brain tissues. CTX0E03 transplantation also reduced glial scar formation and inflammation, as well as increasing endogenous neurogenesis and angiogenesis. Overall, our results demonstrate that CTX0E03, a clinical-grade neural stem cell line, is effective for preclinical test in HD, and, therefore, will be useful for clinical development in the treatment of HD patients.


Assuntos
Doença de Huntington/metabolismo , Células-Tronco Neurais/metabolismo , Ácido Quinolínico/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Gradação de Tumores
2.
Bull Exp Biol Med ; 168(4): 542-551, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32157512

RESUMO

Human placenta mesenchymal stromal cells were injected to healthy rats either stereotaxically into the striatum or intra-arterially through the internal carotid artery. Some cells injected into the brain migrated along the corpus callosum both medially and laterally or concentrated around small blood vessels. A small fraction of MSC injected intra-arterially adhered to the endothelium and stayed inside blood vessels for up to 48 hours mostly in the basin of the middle cerebral artery. Neither stereotaxic, nor intra-arterial transplantation of mesenchymal stromal cells modulated the proliferation of neural stem cells in the subventricular zone of the brain, but stereotaxic transplantation suppressed activation of their proliferation in response to traumatization with the needle.


Assuntos
Corpo Estriado/citologia , Ventrículos Laterais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Placenta/citologia , Animais , Artéria Carótida Interna/citologia , Movimento Celular , Proliferação de Células , Corpo Estriado/cirurgia , Feminino , Humanos , Injeções Intra-Arteriais , Injeções Intraventriculares , Ventrículos Laterais/cirurgia , Masculino , Células-Tronco Mesenquimais/fisiologia , Artéria Cerebral Média/citologia , Células-Tronco Neurais/fisiologia , Placenta/fisiologia , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar , Técnicas Estereotáxicas , Transplante Heterólogo
3.
Bull Exp Biol Med ; 166(4): 586-590, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783841

RESUMO

Intracerebral transplantation of mesenchymal stem cells to 6- and 12-month-old SHR rats induced angiogenesis in the pia mater. In 6-months-old SHR rats, perfusion in the brain tissue after cell transplantation considerably increased, while in 12-month-old rats it remained practically unchanged. We also observed marked activation of regulatory processes in the cerebral vascular system, most pronounced in 12-month-old rats. Neurogenic and myogenic tone of cerebral vessels increased significantly, while endothelium-dependent tone slightly decreased. The increase in neurogenic and myogenic tone of blood vessels in SHR rats at the age of 6 and 12 months after transplantation of stem cells can be explained by the formation of new smooth muscle cells in the pre-existing arteries walls. Greater muscle mass developed stronger force and contributed to narrowing of the arterial lumen, as a result, there was no increase in blood flow despite the downstream angiogenesis. A slight decrease in endothelium-dependent tone can be explained by increased production of vasodilators by newly formed endothelial cells.


Assuntos
Circulação Cerebrovascular/fisiologia , Células-Tronco Mesenquimais/citologia , Animais , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
4.
J Stroke Cerebrovasc Dis ; 27(9): 2453-2465, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30029838

RESUMO

INTRODUCTION: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS: A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS: The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS: These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.


Assuntos
Isquemia Encefálica/terapia , Transplante de Células-Tronco , Tecido Adiposo/citologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proliferação de Células , Modelos Animais de Doenças , Proteína Duplacortina , Gliose/diagnóstico por imagem , Gliose/metabolismo , Gliose/patologia , Gliose/terapia , Humanos , Masculino , Camundongos Nus , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Neurônios/metabolismo , Neurônios/patologia , Distribuição Aleatória , Transplante de Células-Tronco/efeitos adversos , Células-Tronco/citologia , Transplante Heterólogo
5.
Bull Exp Biol Med ; 163(1): 129-132, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28580491

RESUMO

Using a TV device for studying microcirculation (×40), we analyzed the density of the whole microvascular network and the density of arterioles in the pia mater of the sensorimotor cortex in SHR rats of different ages (3-4 and 12 months) after intracerebral transplantation of human mesenchymal stem cells. We found that the density of pial microvascular network in SHR rats receiving transplantation of human mesenchymal stem cells increased to a level observed in young Wistar-Kyoto rats.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Microvasos/fisiologia , Animais , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microcirculação/fisiologia , Pia-Máter/citologia , Pia-Máter/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
6.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667286

RESUMO

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Células-Tronco Neurais , Sinapses , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Ratos , Sinapses/metabolismo , Masculino , Neuritos/metabolismo , Encéfalo/patologia , Isquemia Encefálica/terapia , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia
7.
Acta Neuropathol Commun ; 11(1): 150, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715247

RESUMO

The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aß-42 and ß-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Proteômica , Autopsia , Hipocampo
8.
Methods Cell Biol ; 171: 127-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953197

RESUMO

Human neural stem cells (hNSCs) hold great promises for the development of cell-based therapies for neurodegenerative diseases, given their capability to provide immunomodulatory and trophic support and to replace, to a limited extent, damaged, or lost cells. Human NSCs are under clinical evaluation for the treatment of several neurodegenerative diseases. Still, issues related to the large-scale production of clinical-grade fetal hNSCs and their allogeneic nature-requiring immunosuppressive regimens-have hampered their full exploitation as therapeutics. NSCs derived from human induced pluripotent stem cells (hiPSCs) provide a valuable alternative to fetal hNSCs since they can be generated from autologous or HLA-matched donors expanded for large-scale clinical-grade production, and are amenable for gene addition/gene editing strategies, thus potentially addressing CNS diseases of genetic origin. The prospective use of hiPSC-derived NSCs (hiPSC-NSCs) for CNS-directed therapies demands a careful evaluation of the efficacy and safety of these cell populations in animal models. Here, we describe a protocol for the transplantation and phenotypical characterization of hiPSC-NSCs in neonatal immunodeficient mice. This protocol is relevant to assessing the safety and the efficacy of hiPSC-NSC transplantation to target early-onset neurodegenerative or demyelinating CNS diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Animais Recém-Nascidos , Diferenciação Celular , Edição de Genes , Humanos , Camundongos
9.
Front Cell Neurosci ; 14: 546659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100972

RESUMO

In subacute and chronic phases of the stroke, there are no therapeutics available at present to promote functional recovery. Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) are one of the candidate cell types for treating subacute-phase stroke. The benefits of cell-based therapy largely depend on the migratory capacity of products administered, as well as their potential for engraftment in targeted tissues and paracrine activities. Timing and delivery modes may also influence the outcomes of stem-cell therapy. Still, the functional recuperative effects of differing hUC-MSC delivery modes, about cell replacement and cell-to-cell paracrine activity levels, have yet to be clarified in subacute phases of stroke.This study was conducted to compare the therapeutic effects of various delivery routes when administering Good Manufacturing Practice (GMP)-grade hUC-MSCs in a rodent model of subacute-phase stroke. Cell aliquots (1 × 106) were given to rats as intravenous (IV) injections or intracerebral (IC) transplants 1 week after middle cerebral artery occlusion (MCAo). Transplanted rats were examined up to 7 weeks later using various behavioral tests and immunohistochemical analyses. Most IC-transplanted cells survived for short periods (i.e., <4 weeks after receipt) and gradually disappeared, whereas IV-injected cells were undetectable in the brain at the same time points (i.e., 3 days, 4 weeks, or 7 weeks after injection). Although short-lived, IC-transplanted cells effectively improved behavioral deficits, serving to reduce infarct volumes and glial scar formation, increase subventricular counts of proliferating neuroblasts, and promote cerebrovascular ingrowth in ischemic penumbra regions. IV injection, however, failed to improve behavioral function or histologic parameters during the same 7-week time frame. These findings overall suggest that IC transplantation is preferable to IV injection for delivery of hUC-MSCs during subacute phases of stroke.

10.
Brain Res ; 1680: 143-154, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274877

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are mainly administered via three routes: intra-arterial, intravenous and intracerebral. It has been reported that BMSC administration via each route ameliorates the functional deficits after cerebral ischemia. However, there have been no comparisons of the therapeutic benefits of BMSC administration through different delivery routes. In this study, we injected BMSCs into a rat model of transient middle cerebral artery occlusion (MCAO) through the intra-arterial, intravenous, or intracerebral route at day 7 after MCAO. Control animals received only the vehicle. Neurological function was assessed at post-ischemic days (PIDs) 1, 7, 14, 21, 28 and 35 using behavioral tests (modified Neurological Severity Score (mNSS) and the adhesive removal test). At PID 35, the rat brain tissues were processed for histochemical and immunohistochemical staining. Our results showed that BMSC transplantation via the intra-arterial, intravenous, and intracerebral routes induced greater improvement in neurological functions than the control treatments; furthermore, the intra-arterial route showed the greatest degree and speed of neurological functional recovery. Moreover, BMSCs treatment through each route enhanced reconstruction of axonal myelination in the area of the corpus callosum on the infarct side of the cerebral hemisphere, increased the expression of SYN and Ki-67, and decreased the expression of Nogo-A in the brain. These effects were more apparent in the intra-arterial group than in the intravenous and intracerebral groups. These data suggest that BMSCs transplantation, especially through intra-arterial delivery, can effectively improve neurological function intra-arterial. The underlying mechanism may include the promotion of synaptogenesis, endogenous cell proliferation, and axonal regeneration.


Assuntos
Infarto da Artéria Cerebral Média/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Resultado do Tratamento , Análise de Variância , Animais , Peso Corporal/fisiologia , Bromodesoxiuridina/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Injeções Intra-Arteriais , Injeções Intravenosas , Injeções Intraventriculares , Antígeno Ki-67/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Exame Neurológico , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Sinaptofisina/metabolismo
11.
Stem Cells Transl Med ; 6(2): 352-368, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191778

RESUMO

Allogeneic fetal-derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient-specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene-therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC-derived neural stem cells (NSCs) showing a reliable "NSC signature" is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS-NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a "gold standard" in a side-by-side comparison when validating the phenotype of hiPS-NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS-NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA-overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA-overexpressing iPSC-derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient-specific ARSA-overexpressing hiPS-NSCs may be used in autologous ex vivo gene therapy protocols to provide long-lasting enzymatic supply in MLD-affected brains. Stem Cells Translational Medicine 2017;6:352-368.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Cerebrosídeo Sulfatase/biossíntese , Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Leucodistrofia Metacromática/cirurgia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Cerebrosídeo Sulfatase/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Indução Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatologia , Camundongos Endogâmicos NOD , Camundongos SCID , Regeneração Nervosa , Células-Tronco Neurais/enzimologia , Fenótipo , Sulfoglicoesfingolipídeos/metabolismo , Transcriptoma
12.
Neurorehabil Neural Repair ; 30(9): 845-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26944320

RESUMO

The remarkable scientific and technological advances in the field of cell research have not been translated into viable restorative therapies for brain disorders. In this article, we examine the best available evidence for the clinical efficacy of reconstructive intracerebral transplantation in people with Parkinson's disease (PD), with the aim of identifying methodological obstacles to the translation process. The major stumbling block is the fact that the potential contributions of people with neural grafts and the effects of the physical and social environment in which they recover have not been adequately investigated and applied to advancing the clinical stages of the research program. We suggest that the biopsychosocial model along with emerging evidence of targeted rehabilitation can provide a useful framework for conducting research and evaluation that will ensure the best possible outcomes following intracerebral transplantation for PD.


Assuntos
Avaliação de Resultados em Cuidados de Saúde/métodos , Doença de Parkinson/terapia , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante/métodos
13.
EBioMedicine ; 8: 83-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27428421

RESUMO

Parkinson's disease is a common neurodegenerative disorder, which is due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and for which no definitive cure is currently available. Cellular functions in mouse and human tissues can be restored after fusion of bone marrow (BM)-derived cells with a variety of somatic cells. Here, after transplantation of hematopoietic stem and progenitor cells (HSPCs) in the SNpc of two different mouse models of Parkinson's disease, we significantly ameliorated the dopaminergic neuron loss and function. We show fusion of transplanted HSPCs with neurons and with glial cells in the ventral midbrain of Parkinson's disease mice. Interestingly, the hybrids can undergo reprogramming in vivo and survived up to 4weeks after transplantation, while acquiring features of mature astroglia. These newly generated astroglia produced Wnt1 and were essential for functional rescue of the dopaminergic neurons. Our data suggest that glial-derived hybrids produced upon fusion of transplanted HSPCs in the SNpc can rescue the Parkinson's disease phenotype via a niche-mediated effect, and can be exploited as an efficient cell-therapy approach.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Doença de Parkinson/metabolismo , Animais , Contagem de Células , Fusão Celular , Sobrevivência Celular , Reprogramação Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Células Híbridas , Masculino , Camundongos , Neuroglia/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Substância Negra/metabolismo , Substância Negra/patologia , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA