Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
2.
Methods ; 214: 8-17, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068599

RESUMO

Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.


Assuntos
Aminoácidos , Trombose , Humanos , Aminoácidos/metabolismo , Compostos de Sulfidrila/química , Transferência Ressonante de Energia de Fluorescência , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Trombose/metabolismo , Oxirredução
3.
J Biol Chem ; 298(8): 102217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780832

RESUMO

Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a') and two inactive (b, b'), organized to form a flexible abb'a' U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI's structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two "open" (O1 and O2) and one "closed" (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Cristalografia por Raios X , Cisteína/química , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo
4.
J Mol Evol ; 91(1): 76-92, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580111

RESUMO

The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.


Assuntos
Bactérias , Evolução Molecular , Bactérias/genética , Duplicação Gênica , Archaea/genética , Isomerases/genética
5.
Chembiochem ; 24(21): e202300442, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489700

RESUMO

Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/tratamento farmacológico , Doença dos Legionários/microbiologia , Proteínas de Ligação a Tacrolimo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Legionella/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833959

RESUMO

Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.


Assuntos
Isomerases , Engenharia de Proteínas , Temperatura , Sacarose , Estabilidade Enzimática
7.
Biochem Cell Biol ; 100(2): 152-161, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007172

RESUMO

Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is a target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and are suspected to confer resistance to VKA and (or) affect its velocity. Nevertheless, the results of these studies have been conflicting, and the functional characterization of these mutations in the cell system is complex because of the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to evaluate the vitamin K cycle in HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when VKORC1 and VKORC1L1 were knocked out, the K/KO balance decreased significantly due to the accumulation of vitamin KO. In contrast, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating the limitation of VKOR activity. This limitation was shown to be due to insufficient expression of the activation partner of VKORC1, as overexpression of protein disulfide isomerase (PDI) overcomes this limitation. This study is the first to demonstrate the functional interaction between VKORC1 and PDI.


Assuntos
Isomerases de Dissulfetos de Proteínas , Vitamina K , Anticoagulantes , Células HEK293 , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
8.
Chembiochem ; 23(2): e202100487, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34856049

RESUMO

Methylmalonyl-CoA epimerase (MMCE) is proposed to use general acid-base catalysis, but the proposed catalytic glutamic acids are highly asymmetrical in the active site unlike many other racemases. To gain insight into the puzzling relationships between catalytic mechanism, structure, and substrate preference, we solved Streptomyces coelicolor MMCE structures with substrate or 2-nitropropionyl-CoA, an intermediate/transition state analogue. Both ligand bound structures have a planar methylmalonate/2-nitropropionyl moiety indicating a deprotonated C2 with ≥4 Šdistances to either catalytic acid. Both glutamates interact with the carboxylate/nitro group, either directly or through other residues. This suggests the proposed catalytic acids sequentially catalyze proton shifts between C2 and carboxylate of the substrate with an enolate intermediate. In addition, our structures provide a platform to design mutations for expanding substrate scope to support combinatorial biosynthesis.


Assuntos
Racemases e Epimerases/metabolismo , Streptomyces coelicolor/enzimologia , Catálise , Domínio Catalítico , Humanos , Especificidade por Substrato
9.
Cancer Cell Int ; 22(1): 218, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725466

RESUMO

BACKGROUND: Protein disulphide isomerases (PDIs) play an important role in cancer progression. However, the relative contribution of the various isoforms of PDI in tumorigenesis is not clear. METHODS: The content of PDI isoforms in 22 cancer cells lines was investigated using LC-MS/MS-based proteomic analysis. The effects of PDIA1, PDIA3 and PDIA17 inhibition on the proliferation, migration and adhesion of MCF-7 and MDA-MB-231 cells, identified as high and low PDIA17 expressing cells, respectively, were assessed using novel aromatic N-sulphonamides of aziridine-2-carboxylic acid derivatives as PDI inhibitors. RESULTS: PDIA1 and PDIA3 were the most abundant in cancer cell lysates and were also detected extracellularly in breast cancer cells (MDA-MB-231 and MCF-7). Some cancer cell lines (e.g., MCF-7, HT-29) showed upregulated expression of PDIA17, whereas in others (e.g., MDA-MB-231, 67NR), PDIA17 was not detected. The simultaneous inhibition of PDIA1 and PDIA3 showed similar anti-proliferative effects in MCF-7 and MDA-MB-231 breast cancer cells. However, the inhibition of PDIA1 and PDIA17 in the MCF-7 cell line resulted in more effective anti-adhesive and anti-proliferative effects. CONCLUSIONS: PDIA1 and PDIA3 represent major isoforms of multiple cancer cells, and their non-selective inhibition displays significant anti-proliferative effects irrespective of whether or not PDIA17 is present. The more pronounced anti-adhesive effects of PDI inhibition in hormone-sensitive MCF-7 cells featured by higher levels of PDIs when compared to triple-negative MDA-MB-231 cells suggests that targeting extracellular PDIA1 and PDIA3 with or without additional PDIA17 inhibition may represent a strategy for personalized anti-adhesive, anti-metastatic therapy in cancers with high PDI expression.

10.
Genome ; 64(6): 599-614, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33306442

RESUMO

Protein disulfide isomerases (PDIs) are pivotal protein folding catalysts in the endoplasmic reticulum (ER) through formation of disulfide bond, isomerization, and inhibition of misfolded protein aggregation. When protein folding capacity is overwhelmed by the demands during transitions between growth phases or under environmental changes, the accumulation of unfolded or misfolded proteins in the ER triggers ER stress. However, little is known about the PDI gene family in the model legume Medicago truncatula, especially the responses to ER stress. Therefore, we identified 17 putative PDI genes from the genome of M. truncatula and present their gene and protein structures, phylogenetic relationships, chromosomal distributions, and synteny analysis with the orthologs in four other eudicot species, including Arabidopsis thaliana, Glycine max, Brassica rapa, and Vitis vinifera. Moreover, expression profiles derived from transcriptome data showed distinct expression patterns of MtPDI genes among plant organs, while real-time quantitative PCR analysis and data from the proteome revealed the potential roles of MtPDI genes in response to ER stress. Our study provides a foundation for further investigations of the biological roles of PDI genes in Medicago, especially their roles in response to ER stress.


Assuntos
Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Medicago truncatula/genética , Família Multigênica/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Brassica rapa/genética , Cromossomos de Plantas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/classificação , Dobramento de Proteína , Alinhamento de Sequência , Sintenia , Transcriptoma , Vitis/genética
11.
Chembiochem ; 21(15): 2161-2169, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181549

RESUMO

The sucrose isomerase SmuA from Serratia plymuthica efficiently catalyses the isomerisation of sucrose into isomaltulose, an artificial sweetener used in the food industry. However, the formation of a hygroscopic by-product, trehalulose, necessitates additional separation to obtain a crystalline product. Therefore, we have improved the product specificity of SmuA by first introducing a few exploratory amino acid exchanges around the active site and investigating their influence. Then, we devised a second set of mutations, either at promising positions from the preceding cycle, but with a different side chain, or at alternative positions in the vicinity. After seven iterative cycles involving just 55 point mutations, we obtained the triple mutant Y219L/D398G/V465E which showed 2.3 times less trehalulose production but still had high catalytic efficiency (kcat /KM =11.8 mM-1 s-1 ). Not only does this mutant SmuA appear attractive as an industrial biocatalyst, but our semirational protein-engineering strategy, which resembles the battleship board game, should be of interest for other challenging enzyme optimization endeavours.


Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Estabilidade Enzimática , Glucosiltransferases/química , Cinética , Modelos Moleculares , Conformação Proteica , Serratia/enzimologia , Serratia/genética , Especificidade por Substrato
12.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769195

RESUMO

Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCECaldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.


Assuntos
Proteínas de Bactérias/genética , Caldicellulosiruptor/genética , Celulose/metabolismo , Peptidilprolil Isomerase/genética , Proteínas de Bactérias/metabolismo , Caldicellulosiruptor/metabolismo , Deleção de Genes , Glicosilação , Peptidilprolil Isomerase/metabolismo , Especificidade por Substrato
13.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238433

RESUMO

Inflammatory processes are triggered by the fibrinolytic enzyme plasmin. Tissue-type plasminogen activator, which cleaves plasminogen to plasmin, can be activated by the cross-ß-structure of misfolded proteins. Misfolded protein aggregates also represent substrates for plasmin, promoting their degradation, and are potent platelet agonists. However, the regulation of plasmin-mediated platelet activation by misfolded proteins and vice versa is incompletely understood. In this study, we hypothesize that plasmin acts as potent agonist of human platelets in vitro after short-term incubation at room temperature, and that the response to thrombospondin-1 and the bona fide misfolded proteins Eap and SCN--denatured IgG interfere with plasmin, thereby modulating platelet activation. Plasmin dose-dependently induced CD62P surface expression on, and binding of fibrinogen to, human platelets in the absence/presence of plasma and in citrated whole blood, as analyzed by flow cytometry. Thrombospondin-1 pre-incubated with plasmin enhanced these plasmin-induced platelet responses at low concentration and diminished them at higher dose. Platelet fibrinogen binding was dose-dependently induced by the C-terminal thrombospondin-1 peptide RFYVVMWK, Eap or NaSCN-treated IgG, but diminished in the presence of plasmin. Blocking enzymatically catalyzed thiol-isomerization decreased plasmin-induced platelet responses, suggesting that plasmin activates platelets in a thiol-dependent manner. Thrombospondin-1, depending on the concentration, may act as cofactor or inhibitor of plasmin-induced platelet activation, and plasmin blocks platelet activation induced by misfolded proteins and vice versa, which might be of clinical relevance.


Assuntos
Plaquetas/metabolismo , Inflamação/genética , Agregação Plaquetária/genética , Trombospondina 1/sangue , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Humanos , Inflamação/sangue , Inflamação/metabolismo , Isomerases/genética , Isomerases/metabolismo , Selectina-P/sangue , Selectina-P/genética , Peptídeos/genética , Peptídeos/farmacologia , Plasminogênio/genética , Plasminogênio/metabolismo , Ativação Plaquetária/genética , Agregados Proteicos/genética , Conformação Proteica em Folha beta , Dobramento de Proteína/efeitos dos fármacos , Compostos de Sulfidrila/sangue , Compostos de Sulfidrila/metabolismo , Trombospondina 1/genética
14.
New Phytol ; 221(3): 1230-1246, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30230547

RESUMO

Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.


Assuntos
Plantas/metabolismo , Dobramento de Proteína , Pesquisa , Dissulfetos/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução
15.
Adv Exp Med Biol ; 1184: 35-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096026

RESUMO

Although Tau is an intrinsically disordered protein, some level of structure can still be defined, corresponding to short stretches of dynamic secondary structures and a preferential global fold described as an ensemble of conformations. These structures can be modified by Tau phosphorylation, and potentially other post-translational modifications. The analytical capacity of Nuclear Magnetic Resonance (NMR) spectroscopy provides the advantage of offering a residue-specific view of these modifications, allowing to link specific sites to a particular structure. The cis or trans conformation of X-Proline peptide bonds is an additional characteristic parameter of Tau structure that is targeted and modified by prolyl cis/trans isomerases. The challenge in molecular characterization of Tau lies in being able to link structural parameters to functional consequences in normal functions and dysfunctions of Tau, including potential misfolding on the path to aggregation and/or perturbation of the interactions of Tau with its many molecular partners. Phosphorylation of Ser and Thr residues has the potential to impact the local and global structure of Tau.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas tau/química , Proteínas tau/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Secundária de Proteína
16.
Proc Natl Acad Sci U S A ; 113(7): 1796-801, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26842835

RESUMO

Isomerization reactions are fundamental in biology, and isomers usually differ in their biological role and pharmacological effects. In this study, we have cataloged the isomerization reactions known to occur in biology using a combination of manual and computational approaches. This method provides a robust basis for comparison and clustering of the reactions into classes. Comparing our results with the Enzyme Commission (EC) classification, the standard approach to represent enzyme function on the basis of the overall chemistry of the catalyzed reaction, expands our understanding of the biochemistry of isomerization. The grouping of reactions involving stereoisomerism is straightforward with two distinct types (racemases/epimerases and cis-trans isomerases), but reactions entailing structural isomerism are diverse and challenging to classify using a hierarchical approach. This study provides an overview of which isomerases occur in nature, how we should describe and classify them, and their diversity.


Assuntos
Evolução Biológica , Isomerases/metabolismo , Biocatálise , Isomerases/química , Isomerismo , Conformação Proteica
17.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861651

RESUMO

Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.


Assuntos
Proteínas de Plantas/metabolismo , Proteômica/métodos , Tombusviridae/patogenicidade , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Estresse Oxidativo , Fotossíntese , Doenças das Plantas/virologia , Zea mays/virologia
18.
Chembiochem ; 19(3): 207-211, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197144

RESUMO

The protein disulfide isomerase (PDI) family, found in the endoplasmic reticulum (ER) of the eukaryotic cell, catalyzes the formation and cleavage of disulfide bonds and thereby helps in protein folding. A decrease in PDI activity under ER stress conditions leads to protein misfolding, which is responsible for the progression of various human diseases, such as Alzheimer's, Parkinson's, diabetes mellitus, and atherosclerosis. Here we report that water-soluble cyclic diselenides mimic the multifunctional activity of the PDI family by facilitating oxidative folding, disulfide formation/reduction, and repair of the scrambled disulfide bonds in misfolded proteins.


Assuntos
Compostos Organosselênicos/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Biocatálise , Sobrevivência Celular , Dissulfetos/química , Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Células Eucarióticas/enzimologia , Células HEK293 , Humanos , Estrutura Molecular , Compostos Organosselênicos/química , Oxirredutases/química , Isomerases de Dissulfetos de Proteínas/química , Solubilidade , Água/química
19.
Bioorg Med Chem ; 26(7): 1275-1284, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28709846

RESUMO

Biocatalysis has been increasingly used for pharmaceutical synthesis in an effort to make manufacturing processes greener and more sustainable. Biocatalysts that possess excellent activity, specificity, thermostability and solvent-tolerance are highly sought after to meet the requirements of practical applications. Generating biocatalysts with these specific properties can be achieved by either discovery of novel biocatalysts or protein engineering. Meanwhile, chemoenzymatic routes have also been designed and developed for pharmaceutical synthesis on an industrial scale. This review discusses the recent discoveries, engineering, and applications of biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. Key classes of biocatalysts include reductases, oxidases, hydrolases, lyases, isomerases, and transaminases.


Assuntos
Hidrolases/metabolismo , Isomerases/metabolismo , Liases/metabolismo , Oxirredutases/metabolismo , Preparações Farmacêuticas/metabolismo , Transaminases/metabolismo , Biocatálise , Humanos , Preparações Farmacêuticas/química , Engenharia de Proteínas
20.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096758

RESUMO

Prolyl isomerases (Peptidylprolyl isomerase, PPIases) are enzymes that catalyze the isomerization between the cis/trans Pro conformations. Three subclasses belong to the class: FKBP (FK506 binding protein family), Cyclophilin and Parvulin family (Pin1 and Par14). Among Prolyl isomerases, Pin1 presents as distinctive feature, the ability of binding to the motif pSer/pThr-Pro that is phosphorylated by kinases. Modulation of Pin1 is implicated in cellular processes such as mitosis, differentiation and metabolism: The enzyme is dysregulated in many diverse pathological conditions, i.e., cancer progression, neurodegenerative (i.e., Alzheimer's diseases, AD) and metabolic disorders (i.e., type 2 diabetes, T2D). Indeed, Pin1 KO mice develop a complex phenotype of premature aging, cognitive impairment in elderly mice and neuronal degeneration resembling that of the AD in humans. In addition, since the molecule modulates glucose homeostasis in the brain and peripherally, Pin1 KO mice are resistant to diet-induced obesity, insulin resistance, peripheral glucose intolerance and diabetic vascular dysfunction. In this review, we revise first critically the role of Pin1 in neuronal development and differentiation and then focus on the in vivo studies that demonstrate its pivotal role in neurodegenerative processes and glucose homeostasis. We discuss evidence that enables us to speculate about the role of Pin1 as molecular link in the pathogenesis of type 3 diabetes i.e., the clinical association of dementia/AD and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Ciclofilinas/genética , Diabetes Mellitus/patologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Neurônios/enzimologia , Neurônios/patologia , Peptidilprolil Isomerase/classificação , Proteínas de Ligação a Tacrolimo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA