Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(57): e202402578, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39054904

RESUMO

In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.


Assuntos
Pirróis , Ligantes , Pirróis/química , Humanos , Luz , Cristalografia por Raios X , Estilbenos/química , Luminescência
2.
Angew Chem Int Ed Engl ; 63(44): e202409388, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38977417

RESUMO

Isomerisation reactions provide streamlined routes to organic compounds which are otherwise hard to directly synthesise. The most common forms are positional, geometrical or stereochemical isomerisations which involve the relocation of a double bond or a change in relative location of groups in space. In contrast, far fewer examples of structural (or constitutional) isomerisation exist where the connectivity between atoms is altered. The development of platforms capable of such rearrangement poses a unique set of challenges because chemical bonds must be selectively cleaved, and new ones formed without overall addition or removal of atoms. Here, we show that a dual catalytic system can enable the structural isomerisation of readily available allylic alcohols into more challenging-to-synthesise α-arylated ketones via a H-atom transfer initiated semi-pinacol rearrangement. Key to our strategy is the combination of a cobalt catalyst and photocatalyst under reductive, protic conditions which allows intermediates to propagate catalytic turnover. By providing an unusual disconnection to structural motifs which are difficult to access through direct arylation, we anticipate inspiring other advanced catalytic isomerisation strategies that will further retrosynthetic logic for complex molecule synthesis.

3.
Chemistry ; 29(31): e202300383, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36951115

RESUMO

Aromatic amides can be used to construct light-harvesting materials with valuable optical properties. The amide bond is formed using well-known coupling agents in near quantitative yield, as illustrated here through the synthesis of two boron dipyrromethene derivatives bearing an amide linkage. The primary concern with acyl amides is rotation around the C-N bond, leading to cis and trans isomers. Using NMR spectroscopy, quantum chemical calculations and critical comparison to simpler benzamides, the stereochemistry of the target compounds has been addressed. The N-cyclohexyl derivative gave diffraction quality crystals that established a trans geometry for the amide bond. Quantum chemical calculations support the trans geometry as being the lowest-energy structure in solution but indicate that inversion of the aryl ring is an important structural feature. Indeed, rotation around the C(sp2 )-C(aryl) bond has a strong influence on the solution-phase NMR spectra. The amide connection has minimal effect on the photophysical properties.

4.
Chemphyschem ; 24(2): e202200474, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36125423

RESUMO

Structural rearrangements in ions are essential for understanding the composition and evolution of energetic and chemically active environments. This study explores the interconversion routes for simple polycyclic aromatic hydrocarbons, namely naphthalene and azulene radical cations (C10 H8 + ), by combining mass spectrometry and vacuum ultraviolet tunable synchrotron radiation through the chemical monitoring technique. Products of ion-molecule reactions are used to probe C10 H8 + structures that are formed as a function of their internal energies. Isomerisation from azulene radical cation towards naphthalene radical cation in a timescale faster than 80 µs was monitored, whereas no reverse isomerisation was observed in the same time window. When energising C10 H8 + with more than 6 eV, the reactivity of C10 H8 + unveils the formation of a new isomeric group with a contrasted reactivity compared with naphthalene and azulene cations. We tentatively assigned these structures to phenylvinylacetylene cations.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Azulenos , Naftalenos/química , Cátions/química
5.
Cell Mol Life Sci ; 79(3): 138, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184231

RESUMO

Peptidyl-prolyl isomerases (PPIases) catalyze intrinsically slow and often rate-limiting isomerization of prolyl-peptide bonds in unfolded or partially folded proteins, thereby speeding up the folding process and preventing misfolding. They often possess binding and chaperone domains in addition to the domain carrying the isomerization activity. Although generally, their substrates display no identity in their amino acid sequence upstream and downstream of the proline with 20 possibilities for each residue, PPIases are efficient enzymes. SlyD is a highly efficient PPIase consisting of an isomerase domain and an additional chaperone domain. The binding of peptide substrates to SlyD and its enzymatic activity depend to some extend on the proline-proximal residues, however, the impact of proline-distant residues has not been investigated so far. Here, we introduce a label-free NMR-based method to measure SlyD activity on different peptide substrates and analysed the data in the context of obtained binding affinities and several co-crystal structures. We show that especially charged and aromatic residues up to eight positions downstream and three positions upstream of the proline and outside the canonical region of similar conformations affect the activity and binding, although they rarely display distinct conformations in our crystal structures. We hypothesize that these positions primarily influence the association reaction. In the absence of the chaperone domain the isomerase activity strongly correlates with substrate affinity, whereas additional factors play a role in its presence. The mutual orientation of isomerase and chaperone domains depends on the presence of substrates in both binding sites, implying allosteric regulation of enzymatic activity.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Sítios de Ligação , Catálise , Escherichia coli/genética , Fragmentos de Peptídeos/química , Conformação Proteica , Especificidade por Substrato
6.
Angew Chem Int Ed Engl ; 62(27): e202304150, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144434

RESUMO

Amide groups are pervasive across the chemical space continuum, where their structural and pharmacological importance, juxtaposed with the hydrolytic vulnerabilities, continues to fuel bioisostere development. Alkenyl fluorides have a venerable history as effective mimics (Ψ[CF=CH]) owing to the planarity of the motif and intrinsic polarity of the C(sp2 )-F bond. However, emulating the s-cis to the s-trans isomerisation of a peptide bond with fluoro-alkene surrogates remains challenging, and current synthetic solutions only enable access to a single configuration. Through the design of an ambiphilic linchpin based on a fluorinated ß-borylacrylate, it has been possible to leverage energy transfer catalysis to affect this unprecedented isomerisation process: this provides geometrically-programmable building blocks that can be functionalised at either terminus. Irradiation at λmax =402 nm with inexpensive thioxanthone as a photocatalyst enables rapid, effective isomerisation of tri- and tetra-substituted species (up to E/Z 98 : 2 in 1 h), providing a stereodivergent platform for small molecule amide and polyene isostere discovery. Application of the methodology in target synthesis and initial laser spectroscopic studies are disclosed together with crystallographic analyses of representative products.

7.
Chemistry ; 27(57): 14250-14262, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34314083

RESUMO

Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first "naked" (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.


Assuntos
Iminas , Dióxido de Nitrogênio , Cristalografia por Raios X , Ligantes , Tropolona/análogos & derivados
8.
Angew Chem Int Ed Engl ; 60(2): 685-689, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975367

RESUMO

Modular ß-borylacrylates have been validated as programmable, ambiphilic C3 -synthons in the cascade annulation of 2-halo-phenol derivatives to generate structurally and electronically diverse coumarins. Key to this [3+3] disconnection is the BPin unit which serves a dual purpose as both a traceless linker for C(sp2 )-C(sp2 ) coupling, and as a chromophore extension to enable inversion of the alkene geometry via selective energy transfer catalysis. Mild isomerisation is a pre-condition to access 3-substituted coumarins and provides a handle for divergence. The method is showcased in the synthesis of representative natural products that contain this venerable chemotype. Facile entry into π-expanded estrone derivatives modified at the A-ring is disclosed to demonstrate the potential of the method in bioassay development or in drug repurposing.

9.
Chemistry ; 26(23): 5180-5184, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32027425

RESUMO

While the use of visible light in conjunction with transition metal catalysis offers powerful opportunities to switch between on/-off states of catalytic activity, the next frontier would be the ability to switch the actual function of the catalyst and resulting products. Here we report such an example of multi-dimensional catalysis. Featuring an easily prepared, bench-stable cobalt(I) hydride complex in conjunction with pinacolborane, we can switch the reaction outcome between two widely employed transformations, olefin migration and hydroboration, with visible light as the trigger.

10.
Chemphyschem ; 21(23): 2565-2572, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33105054

RESUMO

The ring-opening dynamics of perimidinespirocyclohexadienone derivatives has been studied by means of time-resolved spectroscopy in cyclohexane and acetonitrile solutions. It has been established that molecular isomerisation leading to the open isomer occurs against the background of the S1 -S0 internal conversion of the cyclic form. In addition, the features of the observed spectral changes in the cyclohexane made it possible to distinguish formation of the photoproduct in the T1 state and its relaxation via intersystem crossing to the singlet ground state. The corresponding assignments for transient absorption bands were performed on the basis of TD-DFT calculations.

11.
Chemistry ; 25(22): 5757-5767, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30791171

RESUMO

In order to examine competitive photoisomerization, a series of novel photochromic PtII molecules that contain both dithienylethene (DTE) and B(ppy)Mes2 units (ppy=2-phenylpyridine, Mes=mesityl) were successfully synthesized and fully structurally characterized. Their photochromic properties were examined by UV/Vis, emission and NMR spectroscopy. It was found that the DTE unit in all three compounds is the preferred photoisomerization site, exhibiting reversible photochromism with irradiation. The B(ppy)Mes2 unit does not undergo photoisomerization in these molecules, but likely enhances the photoisomerization quantum efficiency of the DTE moiety through the antenna effect. Extended irradiation with UV light leads to the rearrangement of the ring-closed isomers of DTE. TD-DFT computational studies indicate that the DTE photocyclization proceeds via a triplet pathway through an efficient energy transfer process.

12.
Chemistry ; 25(65): 14983-14998, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515919

RESUMO

Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.

13.
Chem Rec ; 19(2-3): 238-319, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30411498

RESUMO

In this Personal Account, we will give an overview of the room temperature O-directed free radical hydrostannation reaction of propargylically-oxygenated dialkyl acetylenes with Ph3 SnH and catalytic Et3 B/O2 in PhMe. We will show how this excellent reaction evolved, and how it has since been used to stereoselectively construct the complex trisubstituted olefin regions of three synthetically challenging natural product targets: (+)-pumiliotoxin B, (-)-(3R)-inthomycin C, and (+)-acutiphycin. Throughout this Account, we will pay special attention to highlighting important facets of the I-SnPh3 exchange processes that have so far been used in the various different steric settings that we have addressed, and we will document the range of cross coupling protocols that have critically underpinned the first successful applications of this method in complex natural product total synthesis. Last, but not least, we will comment on various aspects of the O-directed free radical hydrostannation mechanism that have been published by ourselves, and others, and we will discuss all of the factors that can contribute to the observed stereo-and regio-chemical outcomes. We will also challenge and refute the recent non-directed stannylvinyl cation mechanism put forward by Organ, Oderinde and Froese for our reaction, and we will show how it cannot be operating in these exclusively free radical hydrostannations.

14.
Bioorg Med Chem ; 27(7): 1246-1253, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30777664

RESUMO

An enzymatic alternative to the chemical synthesis of chiral gem-difluorinated alcohols has been developed. The method is highly effective and stereoselective, feasible at laboratory temperature, avoiding the use of toxic heavy metal catalysts which is an important benefit in medicinal chemistry including the synthesis of drugs and drug precursors. Candida antarctica lipases A and B were applied for the enantioselective resolution of side-chain modified gem-difluorinated alcohols, (R)- and (S)-3-benzyloxy-1,1-difluoropropan-2-ols (1a and 1b), compounds serving as chiral building blocks in the synthesis of various bioactive molecules bearing a gem-difluorinated grouping. The catalytic activity of these lipases was investigated for the chiral acetylation of 1a and 1b in non-polar solvents using vinyl acetate as an acetyl donor. The dependence of the reaction course on various substrate and enzyme concentrations, reaction time, and temperature was monitored by chiral capillary electrophoresis (CE) using sulfobutyl ether ß-cyclodextrin as a stereoselective additive of the aqueous background electrolyte. The application of CE, NMR, and MS methods has proved that the complex enzyme effect of Candida antarctica lipase B leads to the thermodynamically stable (S)-enantiomer 1b instead of the expected acetylated derivatives. In contrast, the enantioselective acetylation of racemic alcohol 1 was observed as a kinetically controlled process, where (R)-enantiomer 1a was formed as the main product. This process was followed by enzymatic hydrolysis and chiral isomerisation. Finally, single pure enantiomers 1a and 1b were isolated and their absolute configurations were assigned from NMR analysis after esterification with Mosher's acids.


Assuntos
Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Biocatálise , Eletroforese Capilar , Estrutura Molecular , Estereoisomerismo , Termodinâmica
15.
Angew Chem Int Ed Engl ; 58(39): 13654-13664, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31233259

RESUMO

Strategies to achieve spatiotemporal regulation of pre-existing alkenes via external stimuli are essential given the ubiquity of feedstock olefins in chemistry and their downstream applications. Mirroring the 1-0 switch that underpins mammalian vision through selective geometric isomerisation in retinal, strategies to manipulate 2D space by both geometric and positional isomerisation of alkenes via chemical, thermal and light-driven processes are being intensively pursued. This minireview highlights the current state of the art in activating and achieving directionality in these fundamental chemical transformations.

16.
Angew Chem Int Ed Engl ; 58(51): 18619-18626, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31541612

RESUMO

An efficient geometrical E→Z isomerisation of alkenyl silanes is disclosed via selective energy transfer using an inexpensive organic sensitiser. Characterised by operational simplicity, short reaction times (2 h), and broad substrate tolerance, the reaction displays high selectivity for trisubstituted systems (Z/E up to 95:5). In contrast to thermal activation, directionality results from deconjugation of the π-system in the Z-isomer due to A1,3 -strain thereby inhibiting re-activation. The structural importance of the ß-substituent logically prompted an investigation of mixed bis-nucleophiles (Si, Sn, B). These versatile linchpins also undergo facile isomerisation, thereby enabling a formal anti-metallometallation. Mechanistic interrogation, supported by a theoretical investigation, is disclosed together with application of the products to the stereospecific synthesis of biologically relevant target structures.

17.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 775-782, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29292238

RESUMO

Biomolecular homochirality refers to the assumption that amino acids in all living organisms were believed to be of the l-configuration. However, free d-amino acids are present in a wide variety of organisms and d-amino acid residues are also found in various peptides and proteins, being generated by enzymatic or non-enzymatic isomerization. In mammals, peptides and proteins containing d-amino acids have been linked to various diseases, and they act as novel disease biomarkers. Analytical methods capable of precisely detecting and quantifying d-amino acids in peptides and proteins are therefore important and useful, albeit their difficulty and complexity. Herein, we reviewed conventional analytical methods, especially 0h extrapolating method, and the problems of this method. For the solution of these problems, we furthermore described our recently developed, sensitive method, deuterium-hydrogen exchange method, to detect innate d-amino acid residues in peptides and proteins, and its applications to sample ovalbumin. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
Aminoácidos/análise , Peptídeos/química , Proteínas/química , Hidrólise
18.
Chemistry ; 23(24): 5682-5686, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28334469

RESUMO

The first bis(σ-zincane) complexes, heterotri- metallic species [M(CO)4 (η2 -HZnBDI)2 ], have been prepared (BDI=κ2 -{2,6-(iPr)2 C6 H3 NCMe}2 CH). For M=Cr, a single stereoisomer is observed in solution and the solid-state. For M=Mo and W, cis and trans isomers were found to reversibly interconvert at 297 K. Despite the huge steric demands of the ligand on zinc, the cis isomer was found to be the most thermodynamically stable in all cases. The activation parameters for the isomerisation when M=Mo are ΔH≠ =20.8 kcal mol-1 and ΔS≠ =-12.8 cal K-1 mol-1 . In combination with DFT calculations, the negative activation entropy suggests an intramolecular rotation mechanism for isomerisation.

19.
Eur J Mass Spectrom (Chichester) ; 23(6): 319-326, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29183187

RESUMO

The value of the Grand Scale 'Magnificent Mass Machine' mass spectrometer in investigating the reactivity of ions in the gas phase is illustrated by a brief analysis of previously unpublished work on metastable ionised n-pentyl methyl ether, which loses predominantly methanol and an ethyl radical, with very minor contributions for elimination of ethane and water. Expulsion of an ethyl radical is interpreted in terms of isomerisation to ionised 3-pentyl methyl ether, via distonic ions and, possibly, an ion-neutral complex comprising ionised ethylcyclopropane and methanol. This explanation is consistent with the closely similar behaviour of the labelled analogues, C3H7CH2CD2OCH3+. and C3H7CD2CH2OCH3+., and is supported by the greater kinetic energy release associated with loss of ethane from ionised n-propyl methyl ether compared to that starting from directly generated ionised 3-pentyl methyl ether.

20.
Environ Toxicol ; 32(2): 569-580, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27030676

RESUMO

Ethylhexyl methoxycinnamate (EHMC) is a widely used UV filter present in a large number of personal care products (PCPs). Under normal conditions, EHMC occurs in a mixture of two isomers: trans-EHMC and cis-EHMC in a ratio of 99:1. When exposed to sunlight, the trans isomer is transformed to the less stable cis isomer and the efficiency of the UV filter is reduced. To date, the toxicological effects of the cis-EHMC isomer remain largely unknown. We developed a completely new method for preparing cis-EHMC. An EHMC technical mixture was irradiated using a UV lamp and 98% pure cis-EHMC was isolated from the irradiated solution using column chromatography. The genotoxic effects of the isolated cis-EHMC isomer and the nonirradiated trans-EHMC were subsequently measured using two bioassays (SOS chromotest and UmuC test). In the case of trans-EHMC, significant genotoxicity was observed using both bioassays at the highest concentrations (0.5 - 4 mg mL-1 ). In the case of cis-EHMC, significant genotoxicity was only detected using the UmuC test at concentrations of 0.25 - 1 mg mL-1 . Based on these results, the NOEC was calculated for both cis- and trans-EHMC, 0.038 and 0.064 mg mL-1 , respectively. Risk assessment of dermal, oral and inhalation exposure to PCPs containing EHMC was carried out for a female population using probabilistic simulation and by using Quantitative in vitro to in vivo extrapolation (QIVIVE). The risk of cis-EHMC was found to be ∼1.7 times greater than trans-EHMC. In the case of cis-EHMC, a hazard index of 1 was exceeded in the 92nd percentile. Based on the observed differences between the isomers, EHMC application in PCPs requires detailed reassessment. Further exploration of the toxicological effects and properties of cis-EHMC is needed in order to correctly predict risks posed to humans and the environment. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 569-580, 2017.


Assuntos
Cinamatos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Protetores Solares/toxicidade , Cromatografia Gasosa , Cinamatos/química , Cosméticos , Feminino , Humanos , Isomerismo , Testes de Mutagenicidade , Medição de Risco , Salmonella typhimurium/genética , Protetores Solares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA