Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(4): 3470-3483, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666948

RESUMO

Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human keratinocytes stimulated by tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), focusing on key signal transduction pathways. Our results demonstrate that kahweol markedly reduces the production of IL-1ß, IL-6, C-X-C motif chemokine ligand 8, and macrophage-derived chemokine in TNF-α/IFN-γ-activated HaCaT cells. Furthermore, it curtails the phosphorylation of key proteins in the mitogen-activated protein kinase (MAPK) pathways, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. Additionally, kahweol impedes the phosphorylation and nuclear translocation of the NF-κB p65 subunit and constrains its DNA-binding capability. It also hampers the phosphorylation, nuclear translocation, and DNA-binding activities of signal transducer and activator of transcription 1 (STAT1) and STAT3. Collectively, these findings suggest that kahweol hinders the generation of cytokines and chemokines in inflamed keratinocytes by inhibiting the MAPK, NF-κB, and STAT cascades. These insights position kahweol as a promising agent for dermatological interventions, especially in managing inflammatory skin conditions such as AD.

2.
Pharmacol Res ; 187: 106596, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473629

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide. Inflammation and its biomarkers, like C-reactive protein (CRP), among the risk factors, such as hypertension, lipid disorders, and diabetes, may be also responsible for the residual cardiovascular disease (CVD) risk. Modern lipid-lowering treatment with statins, ezetimibe, PCSK9 inhibitors, or bempedoic acid does not fully protect against inflammation. The recommendations of the International Lipid Expert Panel (ILEP) indicate selected nutraceuticals with anti-inflammatory properties. Diet may have a significant impact on inflammation. Especially interesting in the context of inflammation is the consumption of coffee and tea. These drinks in many observational studies significantly reduced cardiovascular risk and mortality. The question is whether the anti-inflammatory effects of these drinks contribute significantly to the observed clinical effects. Thus, in this narrative review, we primarily discuss the anti-inflammatory properties of consuming tea and coffee. Based on a comprehensive analysis of the studies and their meta-analyses, inconsistent results were obtained, which makes it impossible to conclusively state how clinically significant the potential anti-inflammatory properties of black and green tea and coffee are. A number of confounding factors can cause the inconsistency of the available results. Consumption of tea and coffee appears to increase adiponectin concentrations, decrease reactive oxygen species, decrease low density lipoprotein (LDL) cholesterol concentrations (effect of green tea, etc.). Despite the still uncertain anti-inflammatory effect of tea and coffee, we recommend their consumption as a part of the healthy diet.


Assuntos
Doenças Cardiovasculares , Café , Humanos , Pró-Proteína Convertase 9 , Doenças Cardiovasculares/prevenção & controle , Chá , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Lipídeos
3.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003505

RESUMO

Triple-negative breast cancer (TNBC) is characterized by aggressive behavior and limited treatment options, necessitating the identification of novel therapeutic targets. In this study, we investigated the clinical significance of connective tissue growth factor (CTGF) as a prognostic marker and explored the potential therapeutic effects of kahweol, a coffee diterpene molecule, in TNBC treatment. Initially, through a survival analysis on breast cancer patients from The Cancer Genome Atlas (TCGA) database, we found that CTGF exhibited significant prognostic effects exclusively in TNBC patients. To gain mechanistic insights, we performed the functional annotation and gene set enrichment analyses, revealing the involvement of CTGF in migratory pathways relevant to TNBC treatment. Subsequently, in vitro experiments using MDA-MB 231 cells, a representative TNBC cell line, demonstrated that recombinant CTGF (rCTGF) administration enhanced cell motility, whereas CTGF knockdown using CTGF siRNA resulted in reduced motility. Notably, rCTGF restored kahweol-reduced cell motility, providing compelling evidence for the role of CTGF in mediating kahweol's effects. At the molecular level, kahweol downregulated the protein expression of CTGF as well as critical signaling molecules, such as p-ERK, p-P38, p-PI3K/AKT, and p-FAK, associated with cell motility. In summary, our findings propose CTGF as a potential prognostic marker for guiding TNBC treatment and suggest kahweol as a promising antitumor compound capable of regulating CTGF expression to suppress cell motility in TNBC. These insights hold promise for the development of targeted therapies and improved clinical outcomes for TNBC patients.


Assuntos
Diterpenos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Preparações Farmacêuticas , Fosfatidilinositol 3-Quinases/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
4.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373177

RESUMO

Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aß), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aß, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aß1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Micronutrientes , Mitocôndrias , Fragmentos de Peptídeos , Metabolismo Secundário , Micronutrientes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hesperidina/farmacologia , Ácido Orótico/farmacologia , Ácido Fólico/farmacologia , Cafeína/farmacologia , Diterpenos/farmacologia , Humanos , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239862

RESUMO

Coffee silverskin (CS) is the thin epidermis covering and protecting the coffee bean and it represents the main by-product of the coffee roasting process. CS has recently gained attention due to its high content in bioactive molecules and the growing interest in valuable reutilization of waste products. Drawing inspiration from its biological function, here its potential in cosmetic applications was investigated. CS was recovered from one of the largest coffee roasters located in Switzerland and processed through supercritical CO2 extraction, thereby generating coffee silverskin extract. Chemical profiling of this extract revealed the presence of potent molecules, among which cafestol and kahweol fatty acid esters, as well as acylglycerols, ß-sitosterol and caffeine. The CS extract was then dissolved in organic shea butter, yielding the cosmetic active ingredient SLVR'Coffee™. In vitro gene expression studies performed on keratinocytes showed an upregulation of genes involved in oxidative stress responses and skin-barrier functionality upon treatment with the coffee silverskin extract. In vivo, our active protected the skin against Sodium Lauryl Sulfate (SLS)-induced irritation and accelerated its recovery. Furthermore, this active extract improved measured as well as perceived skin hydration in female volunteers, making it an innovative, bioinspired ingredient that comforts the skin and benefits the environment.


Assuntos
Antioxidantes , Cosméticos , Humanos , Feminino , Antioxidantes/farmacologia , Pele/metabolismo , Estresse Oxidativo , Alimentos
6.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638852

RESUMO

Kahweol, a coffee-specific diterpene, induces apoptosis in human cancer cells, and some targets of kahweol-mediated apoptosis have been identified. However, the specific apoptotic effects and mechanism of action of kahweol in hepatocellular carcinoma (HCC) cells are unknown. This study was performed to investigate the molecular mechanism by which kahweol induces apoptosis in HCC cells. The Src pathway is associated with apoptosis in cancer. In this study, we found that kahweol induces apoptosis by inhibiting phosphorylation of Src, and also inhibiting p-mTOR and p-STAT3. Therefore, we suggest that kahweol is a potent inhibitor of HCC cell growth.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Diterpenos/farmacologia , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Quinases da Família src/metabolismo , Animais , Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fosforilação/efeitos dos fármacos , RNA-Seq/métodos , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Análise de Sobrevida , Serina-Treonina Quinases TOR/genética , Quinases da Família src/genética
7.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445570

RESUMO

Kahweol is a diterpene present in coffee. Until now, several studies have shown that kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available about skin protection, this study aims to discern the potential abilities of kahweol and the possible regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scavenging ability. Polymerase chain reaction analysis was performed to explore the proper time points and doses affecting skin hydration and barrier-related genes. Luciferase assay and Western blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1 inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1. We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin, and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase activity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated that kahweol promotes skin-moisturizing activities by upregulating STAT1.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/fisiologia , Fator de Transcrição STAT1/metabolismo , Pele/efeitos dos fármacos , Apoptose , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Fator de Transcrição STAT1/genética
8.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500601

RESUMO

Kahweol is a diterpene molecule found in coffee that exhibits a wide range of biological activity, including anti-inflammatory and anticancer properties. However, the impact of kahweol on pancreatic ß-cells is not known. Herein, by using clonal rat INS-1 (832/13) cells, we performed several functional experiments including; cell viability, apoptosis analysis, insulin secretion and glucose uptake measurements, reactive oxygen species (ROS) production, as well as western blotting analysis to investigate the potential role of kahweol pre-treatment on damage induced by streptozotocin (STZ) treatment. INS-1 cells pre-incubated with different concentrations of kahweol (2.5 and 5 µM) for 24 h, then exposed to STZ (3 mmol/L) for 3 h reversed the STZ-induced effect on cell viability, apoptosis, insulin content, and secretion in addition to glucose uptake and ROS production. Furthermore, Western blot analysis showed that kahweol downregulated STZ-induced nuclear factor kappa B (NF-κB), and the antioxidant proteins, Heme Oxygenase-1 (HMOX-1), and Inhibitor of DNA binding and cell differentiation (Id) proteins (ID1, ID3) while upregulated protein expression of insulin (INS), p-AKT and B-cell lymphoma 2 (BCL-2). In conclusion, our study suggested that kahweol has anti-diabetic properties on pancreatic ß-cells by suppressing STZ induced apoptosis, increasing insulin secretion and glucose uptake. Targeting NF-κB, p-AKT, and BCL-2 in addition to antioxidant proteins ID1, ID3, and HMOX-1 are possible implicated mechanisms.


Assuntos
Café/química , Diterpenos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia
9.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530626

RESUMO

Vascular smooth muscle cell (VSMC) phenotype switching from contractile to synthetic is essential for proliferation and migration in vascular pathophysiology. Connective tissue growth factor (CTGF) is a matricellular protein involved in cell adhesion, migration, and proliferation. Kahweol, a diterpene molecule in arabica coffee beans, has been reported to have anti-inflammatory, antiproliferative, and apoptotic effects in many cells. However, in VSMCs, the effects of kahweol on CTGF activities have not been investigated. Thus, in this study, the effects and associated mechanisms of kahweol in CTGF-dependent phenotype switching and migration in VSMCs were examined. Experiments were performed on primary rat aortic smooth muscle cells and a rat VSMC line, A7r5. Western blot analysis was used to determine the protein levels. The mRNA levels of synthetic markers were measured by qRT-PCR. Migration of VSMCs was evaluated by wound healing and transwell assays. Kahweol reduced the angiotensin II (Ang II)-induced CTGF expression. Further, kahweol inhibited expressions of synthetic phenotype markers of VSMC. The kahweol-reduced synthetic marker protein levels were reversed by the administration of rCTGF. However, expressions of contractile phenotype markers of VSMC were not affected. Kahweol suppressed Ang II-stimulated VSMC migration. Moreover, kahweol downregulated Ang II-induced p-FAK, p-Erk, and Yes-associated protein (YAP) protein expressions. Taken together, in Ang II-stimulated VSMCs, kahweol inhibited CTGF-dependent synthetic phenotype switching and migration, with focal adhesion kinase (FAK), Erk, and YAP involved in the underlying mechanisms of the kahweol effects. These results suggest that kahweol has a potential as a therapeutic agent to inhibit CTGF, which is a molecular target in sclerogenic vascular disease.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diterpenos/farmacologia , Músculo Liso Vascular/citologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fenótipo , Cultura Primária de Células , Ratos
10.
Prostate ; 79(5): 468-479, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30569541

RESUMO

BACKGROUND: Coffee inhibits the progression of prostate cancer; however, the direct mechanism through which coffee acts on prostate cancer cells remains unclear. This study aimed to identify the key compounds of coffee that possess anti-cancer effects and to investigate their mechanisms of action. METHODS: The anti-proliferation and anti-migration effects of six potentially active types of coffee compounds, including kahweol acetate, cafestol, caffeine, caffeic acid, chlorogenic acid, and trigonelline hydrochloride, were evaluated using LNCaP, LNCaP-SF, PC-3, and DU145 human prostate cancer cells. The synergistic effects of these compounds were also investigated. Apoptosis-related and epithelial-mesenchymal transition-related proteins, androgen receptor in whole cell and in nucleus, and chemokines were assessed. A xenograft study of SCID mice was performed to examine the in vivo effect of coffee compounds. RESULTS: Among the evaluated compounds, only kahweol acetate and cafestol inhibited the proliferation and migration of prostate cancer cells in a dose-dependent manner. The combination treatment involving kahweol acetate and cafestol synergistically inhibited proliferation and migration (combination index <1) with the induction of apoptosis, the inhibition of epithelial-mesenchymal transition, and decrease in androgen receptor, resulting in the reduction of nuclear androgen receptor in androgen receptor-positive cells. Moreover, kahweol acetate and cafestol downregulated CCR2 and CCR5 without an increase in their ligands, CCL2 and CCL5. The xenograft study showed that oral administration of kahweol acetate and cafestol significantly inhibited tumor growth. CONCLUSION: Kahweol acetate and cafestol synergistically inhibit the progression of prostate cancer. These coffee compounds may be novel therapeutic candidates for prostate cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Diterpenos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Café/química , Diterpenos/administração & dosagem , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Células PC-3 , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Crit Rev Food Sci Nutr ; 59(2): 336-348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28853910

RESUMO

Coffee is one of the most widely consumed beverages in the world. It has primarily consumed due to its stimulant effect and unique taste since the ancient times. Afterwards, its consumption has been historically associated with a lower risk of some diseases such as type 2 diabetes mellitus, obesity, cardiovascular disease and some type of cancer and thus it has also consumed due to health benefits. It contains many bioactive compounds such as caffeine, chlorogenic acids and diterpenoid alcohols which have so far been associated with many potential health benefits. For example, caffeine reduces risk of developing neurodegenerative disease and chlorogenic acids (CGA) and diterpene alcohols have many health benefits such as antioxidant and chemo-preventive. Coffee also have harmful effects. For example, diterpenoid alcohols increases serum homocysteine and cholesterol levels and thus it has adverse effects on cardiovascular system. Overall, the study that supports the health benefits of coffee is increasing. But, it is thought-provoking that the association with health benefits of coffee consumption and frequency at different levels in each study. For this reason, we aimed to examine the health effect of the coffee and how much consumption is to investigate whether it meets the claimed health benefits.


Assuntos
Café , Promoção da Saúde , Cafeína/administração & dosagem , Cafeína/efeitos adversos , Doenças Cardiovasculares/prevenção & controle , Ácido Clorogênico/administração & dosagem , Café/química , Diabetes Mellitus Tipo 2/prevenção & controle , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Neoplasias/prevenção & controle , Doenças Neurodegenerativas/prevenção & controle , Obesidade/prevenção & controle
12.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480213

RESUMO

Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.


Assuntos
Diterpenos/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/química , Humanos , Hipoglicemiantes/farmacologia
13.
Crit Rev Food Sci Nutr ; 58(10): 1706-1714, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28084806

RESUMO

Coffee consumption alters plasma lipid and cholesterol concentrations, however, its effects on lipoprotein(a) (Lp(a)) have received little study. The aim of this PRISMA compliant systematic review was to examine the role of coffee on serum Lp(a). This study was prospectively registered (PROSPERO 2015:CRD42015032335). PubMed, Scopus, Web of Science and Cochrane Central were searched from inception until 9th January 2016 to detect trials and epidemiological studies investigating the impact of coffee on serum Lp(a) concentrations in humans. We identified six relevant publications describing nine experimental trials of various designs. There were a total of 640 participants across all studies and experimental groups. In short-term controlled studies, consumption of coffee, or coffee diterpenes was associated with either a reduction in serum Lp(a) of ≤11 mg/dL (6 trials, 275 participants), or no effect (2 trials, 56 participants). Conversely, one cross-sectional study with 309 participants showed serum Lp(a) was elevated in chronic consumers of boiled coffee who had a median Lp(a) of 13.0 mg/dL (range 0-130) compared with consumers of filtered coffee who had median Lp(a) 7.9 mg/dL (range 0-144). The effect of coffee on Lp(a) is complex and may follow a biphasic time-course. The type of coffee and the method of preparation appear to be important to determining the effect on Lp(a).


Assuntos
Café , Lipoproteína(a)/sangue , Humanos
14.
Molecules ; 23(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551667

RESUMO

Coffee is one of the most popular beverages worldwide. Coffee contains bioactive compounds that affect the human body such as caffeine, caffeic acid, chlorogenic acids, trigonelline, diterpenes, and melanoidins. Some of them have demonstrated potential anticarcinogenic effects in animal models and in human cell cultures, and may play a protective role against colorectal cancer. Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the USA and other countries. Dietary patterns, as well as the consumption of beverages, may reduce the risk of CRC incidence. In this review, we focus on published epidemiological studies concerning the association of coffee consumption and the risk of development of colorectal cancer, and provide a description of selected biologically active compounds in coffee that have been investigated as potential cancer-combating compounds: Caffeine, caffeic acid (CA), chlorogenic acids (CGAs), and kahweol in relation to colorectal cancer progression in in vitro settings. We review the impact of these substances on proliferation, viability, invasiveness, and metastasis, as well as on susceptibility to chemo- and radiotherapy of colorectal cancer cell lines cultured in vitro.


Assuntos
Carcinogênese/patologia , Café/química , Neoplasias Colorretais/patologia , Progressão da Doença , Animais , Anticarcinógenos/farmacologia , Humanos , Fatores de Risco
15.
J Food Sci Technol ; 53(11): 3916-3927, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28035147

RESUMO

Several coffee brews, including classical and commercial beverages, were analyzed for their diterpene esters content (cafestol and kahweol linoleate, oleate, palmitate and stearate) by high performance liquid chromatography with diode array detector (HPLC-DAD) combined with spectral deconvolution. Due to the coelution of cafestol and kahweol esters at 225 nm, HPLC-DAD did not give accurate quantification of cafestol esters. Accordingly, spectral deconvolution was used to deconvolve the co-migrating profiles. Total cafestol and kahweol esters content of classical coffee brews ranged from 5-232 to 2-1016 mg/L, respectively. Commercial blends contained 1-54 mg/L of total cafestol esters and 2-403 mg/L of total kahweol esters. Boiled coffee had the highest diterpene esters content, while filtered and instant brews showed the lowest concentrations. However, individual diterpene esters content was not affected by brewing procedure as in terms of kahweol esters, kahweol palmitate was the main compound in all samples, followed by kahweol linoleate, oleate and stearate. Higher amounts of cafestol palmitate and stearate were also observed compared to cafestol linoleate and cafestol oleate. The ratio of diterpene esters esterified with unsaturated fatty acids to total diterpene esters was considered as measure of their unsaturation in analyzed samples which varied from 47 to 52%. Providing new information regarding the diterpene esters content and their distribution in coffee brews will allow a better use of coffee as a functional beverage.

16.
J Sep Sci ; 38(4): 612-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521818

RESUMO

In this manuscript, the separation of kahweol and cafestol esters from Arabica coffee brews was investigated using liquid chromatography with a diode array detector. When detected in conjunction, cafestol, and kahweol esters were eluted together, but, after optimization, the kahweol esters could be selectively detected by setting the wavelength at 290 nm to allow their quantification. Such an approach was not possible for the cafestol esters, and spectral deconvolution was used to obtain deconvoluted chromatograms. In each of those chromatograms, the four esters were baseline separated allowing for the quantification of the eight targeted compounds. Because kahweol esters could be quantified either using the chromatogram obtained by setting the wavelength at 290 nm or using the deconvoluted chromatogram, those compounds were used to compare the analytical performances. Slightly better limits of detection were obtained using the deconvoluted chromatogram. Identical concentrations were found in a real sample with both approaches. The peak areas in the deconvoluted chromatograms were repeatable (intraday repeatability of 0.8%, interday repeatability of 1.0%). This work demonstrates the accuracy of spectral deconvolution when using liquid chromatography to mathematically separate coeluting compounds using the full spectra recorded by a diode array detector.

17.
Biochem Biophys Res Commun ; 447(3): 452-8, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24732357

RESUMO

The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Diterpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Feminino , Células HL-60 , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo
18.
Phytother Res ; 28(12): 1879-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196544

RESUMO

Kahweol, the coffee-specific deterpene, has been shown to have potential anti-cancer effects against several cancers. However, the molecular mechanisms underlying the anti-cancer activity of kahweol have not yet established. In this study, we investigated whether kahweol could show anti-cancer effects on oral squamous cell lines (OSCCs), HN22 and HSC4. We conducted an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, 4'-6-diamidino2-phenylindole (DAPI) staining, propidium iodide staining, immunocytochemistry, and Western blot analysis for the characterization of kahweol and the underlying signaling pathway. We determined that kahweol-treated cells showed significantly decreased cell viability and increased nuclear condensation and an increased sub-G1 population in OSCCs. Interestingly, suppression of the transcription factor specificity protein 1 (Sp1) was followed by induced apoptosis by kahweol in a dose-dependent manner. In addition, kahweol modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and anti-apoptotic proteins, resulting in apoptosis. Taken together, results from these findings suggest that kahweol may be a potential anti-cancer drug candidate to induce apoptotic cell death through downregulation of Sp1 in OSCCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/patologia , Diterpenos/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo
19.
J Agric Food Chem ; 72(29): 16461-16474, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984670

RESUMO

Coffee is a widely consumed beverage rich in bioactive phytochemicals. This study investigated the effect of brewing method on the profile of potential bioactive compounds in different coffee beverages using metabolomics and lipidomics based on UHPLC-MS/QTOF. The oil contents of the espresso coffee (EC), pot coffee (PC), instant coffee (IC), and filter coffee (FC) beverages studied were 0.13% ± 0.002, 0.12% ± 0.001, 0.04% ± 0.002, and 0.03% ± 0.003, respectively. Univariate analysis indicated significant differences (P < 0.001) in oil content when EC and PC beverages were compared with IC and FC beverages. Principal component analysis revealed similarities in the lipid profiles of FC and EC beverages and the hydrophilic profiles of PC and FC beverages. The EC beverage had the highest intensity of hydrophilic compounds such as adenine, theobromine, chlorogenic acid, and caffeine. The PC beverage was the most abundant in triglycerides, phosphatidylcholine, and diterpenes. Cafestol and kahweol esters, but not their free forms, were the most abundant diterpenes in the PC beverage. This work provides information on the differences in the profile of potentially bioactive compounds in four commonly consumed coffee beverage types and, thus, on the possible differences in the health effects of these coffee beverage types.


Assuntos
Coffea , Café , Interações Hidrofóbicas e Hidrofílicas , Café/química , Coffea/química , Coffea/metabolismo , Cromatografia Líquida de Alta Pressão , Cafeína/análise , Cafeína/metabolismo , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo , Triglicerídeos/análise , Ácido Clorogênico/análise , Ácido Clorogênico/metabolismo
20.
Mol Nutr Food Res ; 67(19): e2300083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37483173

RESUMO

SCOPE: It is well-established that dysregulated mitochondrial homeostasis in macrophages leads to inflammation, oxidative stress, and tissue damage, which are essential in the pathogenesis of sepsis-induced acute lung injury (ALI). Kahweol, a natural diterpene extracted from coffee beans, reportedly possesses anti-inflammatory and mitochondrial protective properties. Herein, the study investigates whether Kahweol can alleviate sepsis-induced ALI and explore the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are intraperitoneally injected with lipopolysaccharide (LPS) for 12 h to induce ALI. Pretreatment with kahweol by gavage for 5 days significantly alleviates lung pathological injury, inflammation, and oxidative stress, accompanied by shifting the dynamic process of mitochondria from fission to fusion, enhancing mitophagy, and activating AMPK. To investigate the underlying molecular mechanisms, differentiated THP-1 cells are cultured in a medium containing Kahweol for 12 h prior to LPS exposure, yielding consistent findings with the in vivo results. Moreover, AMPK inhibitors abrogate the above effects, indicating Kahweol acts in an AMPK-dependent manner. Furthermore, the study explores how Kahweol activates AMPK and finds that this process is mediated by CamKK II. CONCLUSION: Pretreatment with Kahweol attenuates sepsis-induced acute lung injury via improving mitochondrial homeostasis in a CaMKKII/AMPK-dependent pathway and may be a potential candidate to prevent sepsis-induced ALI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA