Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(6): 1263-1275.e16, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437658

RESUMO

Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.


Assuntos
Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Células Th17/imunologia , Células Th17/fisiologia , Adolescente , Adulto , Animais , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Microbiota/fisiologia , Pessoa de Meia-Idade , Células Th17/microbiologia , Adulto Jovem
2.
Cell ; 178(5): 1115-1131.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442404

RESUMO

Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.


Assuntos
Dieta Hiperlipídica , Corpos Cetônicos/metabolismo , Células-Tronco/metabolismo , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/farmacologia , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroximetilglutaril-CoA Sintase/deficiência , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Intestinos/citologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Adulto Jovem
3.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
4.
EMBO J ; 41(9): e110466, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35307861

RESUMO

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Assuntos
Corpos Cetônicos , Neoplasias Pancreáticas , Ácido 3-Hidroxibutírico/metabolismo , Animais , Corpos Cetônicos/metabolismo , Camundongos , Oxo-Ácido-Liases , Pâncreas/metabolismo
5.
Circulation ; 149(19): 1474-1489, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38533643

RESUMO

BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1] ) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Método Duplo-Cego , Idoso , Volume Sistólico/efeitos dos fármacos , Pessoa de Meia-Idade , Estudos Cross-Over , Tolerância ao Exercício/efeitos dos fármacos , Administração Oral , Função Ventricular Esquerda/efeitos dos fármacos , Resultado do Tratamento , Ésteres/administração & dosagem , Cetonas/administração & dosagem
6.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260943

RESUMO

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.


Assuntos
Diabetes Mellitus , Cetose , Humanos , Corpos Cetônicos , Longevidade , Coração
7.
Circ Res ; 132(7): 882-898, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996176

RESUMO

The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.


Assuntos
Insuficiência Cardíaca , Cetose , Humanos , Cetonas/uso terapêutico , Ácido 3-Hidroxibutírico/uso terapêutico , Epigênese Genética , Corpos Cetônicos/uso terapêutico , Corpos Cetônicos/metabolismo , Insuficiência Cardíaca/metabolismo , Cetose/tratamento farmacológico , Cetose/metabolismo , Cetose/patologia
8.
Am J Physiol Cell Physiol ; 326(3): C707-C711, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189135

RESUMO

Ketone bodies are short-chain fatty acids produced by the liver during periods of limited glucose availability, such as during fasting or low carbohydrate feeding. Recent studies have highlighted important nonmetabolic functions of the most abundant ketone body, ß-hydroxybutyrate (BHB). Notably, many of these functions, including limiting specific sources of inflammation, histone deacetylase inhibition, NFκB inhibition, and GPCR stimulation, are particularly important to consider in immune cells. Likewise, dietary manipulations like caloric restriction or ketogenic diet feeding have been associated with lowered inflammation, improved health outcomes, and improved host defense against infection. However, the underlying mechanisms of the broad benefits of ketosis remain incompletely understood. In this Perspective, we contextualize the current state of the field of nonmetabolic functions of ketone bodies specifically in the immune system and speculate on the molecular explanations and broader physiological significance.


Assuntos
Corpos Cetônicos , Cetose , Humanos , Ácido 3-Hidroxibutírico , Sistema Imunitário , Inflamação
9.
Am J Physiol Cell Physiol ; 326(6): C1710-C1720, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708524

RESUMO

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two ß-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-ß-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.


Assuntos
Ácido 3-Hidroxibutírico , Acetoacetatos , Glucose , Insulina , Fibras Musculares Esqueléticas , Acetoacetatos/metabolismo , Acetoacetatos/farmacologia , Animais , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Ratos , Corpos Cetônicos/metabolismo , Camundongos
10.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682238

RESUMO

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Assuntos
Músculo Esquelético , Transporte Proteico , Serina-Treonina Quinases TOR , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/administração & dosagem , Masculino , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Método Duplo-Cego , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Período Pós-Prandial , Cetonas/metabolismo , Proteínas Musculares/metabolismo
11.
Am J Physiol Cell Physiol ; 326(3): C948-C963, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189128

RESUMO

Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.


Assuntos
Corpos Cetônicos , Neoplasias , Animais , Humanos , Corpos Cetônicos/metabolismo , Corpos Cetônicos/farmacologia , Neoplasias/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Fenômenos Fisiológicos Celulares , Mamíferos/metabolismo
12.
Am J Physiol Cell Physiol ; 326(2): C551-C566, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193855

RESUMO

ß-Hydroxybutyrate (ßOHB) is the major ketone in the body, and it is recognized as a metabolic energy source and an important signaling molecule. While ketone oxidation is essential in the brain during prolonged fasting/starvation, other organs such as skeletal muscle and the heart also use ketones as metabolic substrates. Additionally, ßOHB-mediated molecular signaling events occur in heart and skeletal muscle cells, and via metabolism and/or signaling, ketones may contribute to optimal skeletal muscle health and cardiac function. Of importance, when the use of ketones for ATP production and/or as signaling molecules becomes disturbed in the presence of underlying obesity, type 2 diabetes, and/or cardiovascular diseases, these changes may contribute to cardiometabolic disease. As a result of these disturbances in cardiometabolic disease, multiple approaches have been used to elevate circulating ketones with the goal of optimizing either ketone metabolism or ketone-mediated signaling. These approaches have produced significant improvements in heart and skeletal muscle during cardiometabolic disease with a wide range of benefits that include improved metabolism, weight loss, better glycemic control, improved cardiac and vascular function, as well as reduced inflammation and oxidative stress. Herein, we present the evidence that indicates that ketone therapy could be used as an approach to help treat cardiometabolic diseases by targeting cardiac and skeletal muscles.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Cetonas/uso terapêutico , Cetonas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Insuficiência Cardíaca/metabolismo
13.
J Neurosci Res ; 102(5): e25342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773878

RESUMO

Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including ß-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.


Assuntos
Glucose , Corpos Cetônicos , Células-Tronco Neurais , Corpos Cetônicos/metabolismo , Células-Tronco Neurais/metabolismo , Humanos , Animais , Glucose/metabolismo , Metabolismo Energético/fisiologia , Diferenciação Celular/fisiologia
14.
Trends Immunol ; 42(5): 389-400, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33865714

RESUMO

Nutrition is essential for supplying an organism with sufficient energy to maintain its bodily functions. Apart from serving as an energy supply, the immunomodulatory effects of diet are emerging as a central aspect of human health. The latest evidence suggests that dietary restriction may play an important regulatory role by influencing the activation and effector functions of immune cells. However, depending on the context, nutrient restriction may have both pathogenic and beneficial effects. Here, we discuss the diverse roles of fasting programs, including ketogenesis in infection and chronic inflammation, aiming to clarify their detrimental and/or beneficial effects. Understanding these differences may help identify conditions under which dietary interventions might serve as putative effective approaches to treat various diseases.


Assuntos
Dieta , Jejum , Humanos , Imunidade
15.
J Magn Reson Imaging ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722043

RESUMO

BACKGROUND: Emerging evidence suggests that fasting could play a key role in cancer treatment. Its metabolic effects on gliomas require further investigation. PURPOSE: To design a multi-voxel 1H/31P MR-spectroscopic imaging (MRSI) protocol for noninvasive metabolic monitoring of cerebral, fasting-induced changes on an individual patient/tumor level, and to assess its technical reliability/reproducibility. STUDY TYPE: Prospective. POPULATION: MRS phantom. Twenty-two patients (mean age = 61, 6 female) with suspected WHO grade II-IV glioma examined before and after 72-hour-fasting prior to biopsy/resection. FIELD STRENGTH/SEQUENCE: 3-T, 1H decoupled 3D 31P MRSI, 2D 1H sLASER MRSI at an echo time of 144 msec, 2D 1H MRSI (as water reference), T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR. sLASER and PRESS sequences were used for phantom measurements. ASSESSMENT: Phantom measurements and spectral simulations were performed with various echo-times for protocol optimization. In vivo spectral analyses were conducted using LCModel and AMARES, obtaining quality/fitting parameters (linewidth, signal-to-noise-ratio, and uncertainty measures of fitting) and metabolite intensities. The volume of glioma sub-regions was calculated and correlated with MRS findings. Ex-vivo spectra of necrotic tumor tissues were obtained using high-resolution magic-angle spinning (HR-MAS) technique. STATISTICAL TESTS: Wilcoxon signed-rank test, Bland-Altman plots, and coefficient of variation were used for repeatability analysis of quality/fitting parameters and metabolite concentrations. Spearman ρ correlation for the concentration of ketone bodies with volumes of glioma sub-regions was determined. A P-value <0.05 was considered statistically significant. RESULTS: 1H and 31P repeatability measures were highly consistent between the two sessions. ß-hydroxybutyrate and acetoacetate were detectable (fitting-uncertainty <50%) in glioma sub-regions of all patients who completed the 72-hour-fasting cycle. ß-hydroxybutyrate accumulation was significantly correlated with the necrotic/non-enhancing tumor core volume (ρ = 0.81) and validated using ex-vivo 1H HR-MAS. DATA CONCLUSION: We propose a comprehensive MRS protocol that may be used for monitoring cerebral, fasting-induced changes in patients with glioma. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

16.
Liver Int ; 44(2): 357-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37933091

RESUMO

BACKGROUND AND AIMS: Alcohol consumption is a well-established risk factor for the onset and progression of hepatic steatosis. Perilipin 5 (Plin5), a lipid droplet protein, is an important protective factor against hepatic lipotoxicity induced by excessive lipolysis, but its role and molecular mechanism in alcoholic liver disease (ALD) are not fully elucidated. METHODS: The optimized National Institute on Alcohol Abuse and Alcoholism model was used to construct ALD model mice. Automatic biochemical analyser was used for Biochemical Parameters. The primary hepatocytes and Plin5-overexpressed HepG2 cells (including full-length Plin5 and Plin5 deleting 444-464 aa) were used for in vitro experiment. Haematoxylin and Eosin staining, Oil Red O staining, Bodipy 493/503 staining, Periodic Acid-Schiff staining, immunohistochemistry and JC-1 staining were used to evaluate cell morphology, lipids, glycogen, inflammation and membrane potential. Commercially kits are used to detect glycolipid metabolites, such as triglycerides, glycogen, glucose, reactive oxygen species, lactic acids, ketone bodies. Fluorescently labelled deoxyglucose, NBDG, was used for glucose intake. An XF96 extracellular flux analyser was used to determinate oxygen consumption rate in hepatocytes. The morphological and structural damage of mitochondria was evaluated by electron microscopy. Classical ultracentrifugation is used to separate the subcellular organelles of tissues and cells. Immunoblotting and qPCR were used to detect changes in mRNA and protein levels of related genes. RESULTS: Our results showed that the expression of Plin5 in mouse livers was enhanced by alcohol intake, and Plin5 deficiency aggravated the alcohol-induced liver injury. To clarify the mechanism, we found that Plin5 deficiency significantly elevated the hepatic NADH levels and ketone body production in the alcohol-treated mice. As NADH elevation could promote the reduction of pyruvate into lactate and then inhibit the gluconeogenesis, alcohol-treated Plin5-deficient mice exhibited more lactate production and severer hypoglycemia. These results implied that Plin5 deficiency impaired the mitochondrial oxidative functions in the presence of alcohol. In addition, we demonstrated that Plin5 could be recruited onto mitochondria by alcohol, while Plin5 without mitochondrial targeting sequences lost its mitochondrial protection functions. CONCLUSION: Collectively, this study demonstrated that the mitochondrial Plin5 could protect the alcohol-induced mitochondrial injury, which provides an important new insight on the roles of Plin5 in highly oxidative tissues.


Assuntos
NAD , Perilipina-5 , Animais , Camundongos , Glucose/metabolismo , Glicogênio/metabolismo , Lactatos/metabolismo , Fígado/metabolismo , Mitocôndrias , NAD/metabolismo , Estresse Oxidativo , Perilipina-5/genética , Perilipina-5/metabolismo
17.
Pediatr Nephrol ; 39(4): 1033-1040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37584686

RESUMO

The last decade has been characterized by exciting findings on eu- or hypoglycemic ketosis and ketoacidosis. This review emphasizes the following five key points: 1. Since the traditional nitroprusside-glycine dipstick test for urinary ketones is often falsely negative, the blood determination of ß-hydroxybutyrate, the predominant ketone body, is currently advised for a comprehensive assessment of ketone body status; 2. Fasting and infections predispose to relevant ketosis and ketoacidosis especially in newborns, infants, children 7 years or less of age, and pregnant, parturient, or lactating women; 3. Several forms of carbohydrate restriction (typically less than 20% of the daily caloric intake) are employed to induce ketosis. These ketogenic diets have achieved great interest as antiepileptic treatment, in the management of excessive body weight, diabetes mellitus, and in sport training; 4. Intermittent fasting is more and more popular because it might benefit against cardiovascular diseases, cancers, neurologic disorders, and aging; 5. Gliflozins, a new group of oral antidiabetics inhibiting the renal sodium-glucose transporter 2, are an emerging cause of eu- or hypoglycemic ketosis and ketoacidosis. In conclusion, the role of ketone bodies is increasingly recognized in several clinical conditions. In the context of acid-base balance evaluation, it is advisable to routinely integrate both the assessment of lactic acid and ß-hydroxybutyrate.


Assuntos
Cetoacidose Diabética , Cetose , Recém-Nascido , Criança , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Cetoacidose Diabética/diagnóstico , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/terapia , Ácido 3-Hidroxibutírico , Lactação , Cetose/diagnóstico , Cetose/etiologia , Cetose/terapia , Corpos Cetônicos/urina
18.
J Endocrinol Invest ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696124

RESUMO

PURPOSE: Nutritional ketosis synergistically with body-weight loss induced by a very-low-calorie ketogenic diet (VLCKD) has proven to be effective in improving obesity-related pathophysiology. Recently, growing attention has been focused on the relation between erythropoietin (EPO) and obesity. Thus, this study aims to investigate whether nutritional ketosis and weight loss induced by a VLCKD modify the circulating levels of EPO in patients with obesity in comparison with the effect of low-calorie diet (LCD) or bariatric surgery (BS). METHODS: EPO levels, iron status and body composition parameters were evaluated in 72 patients with overweight or obesity and 27 normal-weight subjects at baseline and after the three different weight-reduction therapies (VLCKD, LCD and BS) in 69 patients with excess body weight. ß-hydroxybutyrate levels were also measured in the VLCKD group. The follow-up was established at 2-3 months and 4-6 months. RESULTS: It was found that EPO levels were higher in morbid obesity and correlated with higher basal weight, fat mass (FM) and fat-free mass (FFM) in the overall sample. High baseline EPO levels were also correlated with higher impact on the course of weight loss and changes in FM and FFM induced by the three weight-loss interventions. Furthermore, the VLCKD induced a decrease in EPO levels coinciding with maximum ketosis, which was maintained over time, while statistically significant changes were not observed after LCD and BS. CONCLUSION: The obesity-related increased EPO levels are restored after VLCKD intervention at the time of maximum ketosis, suggesting a potential role of the nutritional ketosis induced by the VLCKD. Baseline EPO levels could be a biomarker of response to a weight-loss therapy.

19.
J Endocrinol Invest ; 47(3): 487-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238506

RESUMO

PURPOSE: The ketogenic nutritional therapy (KeNuT) is an effective dietary treatment for patients with obesity and obesity-related comorbidities, including type 2 diabetes, dyslipidaemia, hypertension, coronary artery disease, and some type of cancers. However, to date an official document on the correct prescription of the ketogenic diet, validated by authoritative societies in nutrition or endocrine sciences, is missing. It is important to emphasize that the ketogenic nutritional therapy requires proper medical supervision for patient selection, due to the complex biochemical implications of ketosis and the need for a strict therapeutic compliance, and an experienced nutritionist for proper personalization of the whole nutritional protocol. METHODS: This practical guide provides an update of main clinical indications and contraindications of ketogenic nutritional therapy with meal replacements and its mechanisms of action. In addition, the various phases of the protocol involving meal replacements, its monitoring, clinical management and potential side effects, are also discussed. CONCLUSION: This practical guide will help the healthcare provider to acquire the necessary skills to provide a comprehensive care of patients with overweight, obesity and obesity-related diseases, using a multistep ketogenic dietary treatment, recognized by the Club of the Italian Society of Endocrinology (SIE)-Diet Therapies in Endocrinology and Metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Dieta , Doenças Metabólicas/terapia , Obesidade/terapia , Itália
20.
Eur Heart J ; 44(18): 1636-1646, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881667

RESUMO

AIMS: Ketone bodies (KB) are an important alternative metabolic fuel source for the myocardium. Experimental and human investigations suggest that KB may have protective effects in patients with heart failure. This study aimed to examine the association between KB and cardiovascular outcomes and mortality in an ethnically diverse population free from cardiovascular disease (CVD). METHODS AND RESULTS: This analysis included 6796 participants (mean age 62 ± 10 years, 53% women) from the Multi-Ethnic Study of Atherosclerosis. Total KB was measured by nuclear magnetic resonance spectroscopy. Multivariable-adjusted Cox proportional hazard models were used to examine the association of total KB with cardiovascular outcomes. At a mean follow-up of 13.6 years, after adjusting for traditional CVD risk factors, increasing total KB was associated with a higher rate of hard CVD, defined as a composite of myocardial infarction, resuscitated cardiac arrest, stroke, and cardiovascular death, and all CVD (additionally included adjudicated angina) [hazard ratio, HR (95% confidence interval, CI): 1.54 (1.12-2.12) and 1.37 (1.04-1.80) per 10-fold increase in total KB, respectively]. Participants also experienced an 87% (95% CI: 1.17-2.97) increased rate of CVD mortality and an 81% (1.45-2.23) increased rate of all-cause mortality per 10-fold increase in total KB. Moreover, a higher rate of incident heart failure was observed with increasing total KB [1.68 (1.07-2.65), per 10-fold increase in total KB]. CONCLUSION: The study found that elevated endogenous KB in a healthy community-based population is associated with a higher rate of CVD and mortality. Ketone bodies could serve as a potential biomarker for cardiovascular risk assessment.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Insuficiência Cardíaca , Infarto do Miocárdio , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Doenças Cardiovasculares/epidemiologia , Aterosclerose/epidemiologia , Modelos de Riscos Proporcionais , Insuficiência Cardíaca/epidemiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA