Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990950

RESUMO

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Assuntos
Regiões 3' não Traduzidas , Estágios do Ciclo de Vida , Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estágios do Ciclo de Vida/genética , Regiões 3' não Traduzidas/genética , Animais , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Poli A/genética , Poliadenilação
2.
Trends Genet ; 37(1): 21-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32993968

RESUMO

The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome's content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read-write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read-write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/genética , Genoma de Protozoário , Kinetoplastida/genética , Leishmania/genética , Trypanosoma brucei brucei/genética , Animais
3.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588197

RESUMO

In Trypanosoma brucei, transition fibres (TFs) form a nine-bladed pattern-like structure connecting the base of the flagellum to the flagellar pocket membrane. Despite the characterization of two TF proteins, CEP164C and T. brucei (Tb)RP2, little is known about the organization of these fibres. Here, we report the identification and characterization of the first kinetoplastid-specific TF protein, named TFK1 (Tb927.6.1180). Bioinformatics and functional domain analysis identified three distinct domains in TFK1 - an N-terminal domain of an unpredicted function, a coiled-coil domain involved in TFK1-TFK1 interaction and a C-terminal intrinsically disordered region potentially involved in protein interaction. Cellular immunolocalization showed that TFK1 is a newly identified basal body maturation marker. Furthermore, using ultrastructure expansion and immuno-electron microscopies we localized CEP164C and TbRP2 at the TF, and TFK1 on the distal appendage matrix of the TF. Importantly, RNAi-mediated knockdown of TFK1 in bloodstream form cells induced misplacement of basal bodies, a defect in the furrow or fold generation, and eventually cell death. We hypothesize that TFK1 is a basal body positioning-specific actor and a key regulator of cytokinesis in the bloodstream form Trypanosoma brucei.


Assuntos
Trypanosoma brucei brucei , Corpos Basais/metabolismo , Citocinese , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo
4.
Annu Rev Microbiol ; 73: 133-154, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500537

RESUMO

Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.


Assuntos
Ciclo Celular , Trypanosoma brucei brucei/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , DNA de Cinetoplasto/metabolismo , DNA de Protozoário/metabolismo , Regulação da Expressão Gênica
5.
Bioorg Med Chem Lett ; 109: 129825, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823730

RESUMO

Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense and is invariably fatal unless treated. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work, informed by previous findings, presents novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives with promising antitrypanosomal activity. In particular, 32 exhibits an in vitro EC50 value of 0.5 µM against Trypanosoma brucei rhodesiense, and analogues 29, 30 and 33 show antitrypanosomal activities in the <1 µM range. We have demonstrated that substituted 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidines present promising antitrypanosomal hit molecules with potential for further preclinical development.


Assuntos
Pirimidinas , Tripanossomicidas , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Parasitária , Estrutura Molecular , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Relação Dose-Resposta a Droga , Tripanossomíase Africana/tratamento farmacológico
6.
Exp Parasitol ; 262: 108789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762201

RESUMO

Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.


Assuntos
Crithidia , Animais , Crithidia/genética , Abelhas/parasitologia , Transgenes , Interações Hospedeiro-Parasita , Mitocôndrias/genética , Proteínas de Fluorescência Verde/genética , Núcleo Celular/genética , Microscopia Confocal
7.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611899

RESUMO

2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.


Assuntos
Doença de Chagas , Pró-Fármacos , Piranos , Safrol/análogos & derivados , Compostos de Sulfidrila , Humanos , Animais , Óxidos , Oxirredução , Mamíferos
8.
Chembiochem ; 24(12): e202300265, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146230

RESUMO

G-quadruplexes (G4s) are nucleic acid secondary structures that have been linked to the functional regulation of eukaryotic organisms. G4s have been extensively characterised in humans and emerging evidence suggests that they might also be biologically relevant for human pathogens. This indicates that G4s might represent a novel class of therapeutic targets for tackling infectious diseases. Bioinformatic studies revealed a high prevalence of putative quadruplex-forming sequences (PQSs) in the genome of protozoans, which highlights their potential roles in regulating vital processes of these parasites, including DNA transcription and replication. In this work, we focus on the neglected trypanosomatid parasites, Trypanosoma and Leishmania spp., which cause debilitating and deadly diseases across the poorest populations worldwide. We review three examples where G4-formation might be key to modulate transcriptional activity in trypanosomatids, providing an overview of experimental approaches that can be used to exploit the regulatory roles and relevance of these structures to fight parasitic infections.


Assuntos
Quadruplex G , Parasitos , Trypanosoma , Animais , Humanos , Parasitos/genética , Trypanosoma/genética , DNA/química , Genoma
9.
J Cell Sci ; 133(8)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32184264

RESUMO

The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids, such as Trypanosoma brucei, have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system, and it therefore remains unknown how mitotic progression is regulated in this organism. Here, we characterized, in the procyclic form of T. brucei, two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10 and KKT19 led to a significant delay in the metaphase to anaphase transition. We also found that phosphorylation of two kinetochore proteins, KKT4 and KKT7, depended on KKT10 and KKT19 in vivo Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10 and KKT19 is tightly controlled to regulate the metaphase to anaphase transition in T. bruceiThis article has an associated First Person interview with the first author of the paper.


Assuntos
Trypanosoma brucei brucei , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Humanos , Cinetocoros , Metáfase , Proteínas de Protozoários/genética , Fuso Acromático , Trypanosoma brucei brucei/genética
10.
J Clin Microbiol ; 60(1): e0171721, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34669455

RESUMO

We aimed to assess the specificity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody detection assays among people with tissue-borne parasitic infections. We tested three SARS-CoV-2 antibody-detection assays (cPass SARS-CoV-2 neutralization antibody detection kit [cPass], Abbott SARS-CoV-2 IgG assay [Abbott Architect], and Standard Q COVID-19 IgM/IgG combo rapid diagnostic test [SD RDT IgM/SD RDT IgG]) among 559 pre-COVID-19 seropositive sera for several parasitic infections. The specificity of assays was 95 to 98% overall. However, lower specificity was observed among sera from patients with protozoan infections of the reticuloendothelial system, such as human African trypanosomiasis (Abbott Architect; 88% [95% CI, 75 to 95]) and visceral leishmaniasis (SD RDT IgG; 80% [95% CI, 30 to 99]), and from patients with recent malaria in areas of Senegal where malaria is holoendemic (ranging from 91% for Abbott Architect and SD RDT IgM to 98 to 99% for cPass and SD RDT IgG). For specimens from patients with evidence of past or present helminth infection overall, test specificity estimates were all ≥96%. Sera collected from patients clinically suspected of parasitic infections that tested negative for these infections yielded a specificity of 98 to 100%. The majority (>85%) of false-positive results were positive by only one assay. The specificity of SARS-CoV-2 serological assays among sera from patients with tissue-borne parasitic infections was below the threshold required for decisions about individual patient care. Specificity is markedly increased by the use of confirmatory testing with a second assay. Finally, the SD RDT IgG proved similarly specific to laboratory-based assays and provides an option in low-resource settings when detection of anti-SARS-CoV-2 IgG is indicated.


Assuntos
COVID-19 , Helmintos , Doenças Parasitárias , Animais , Anticorpos Antivirais , Humanos , Imunoglobulina M , SARS-CoV-2 , Sensibilidade e Especificidade , Testes Sorológicos
11.
RNA ; 26(1): 69-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704716

RESUMO

Most mitochondrial mRNAs are transcribed as polycistronic precursors that are cleaved by endonucleases to produce mature mRNA transcripts. However, recent studies have shown that mitochondrial transcripts in the kinetoplastid protozoan, Trypanosoma brucei, are transcribed individually. Also unlike most mitochondrial mRNAs, the 5' end of these transcripts harbor a triphosphate that is hydrolyzed. This modification is carried out by a putative Nudix hydrolase called MERS1. The Nudix motif in MERS1 is degenerate, lacking a conserved glutamic acid, thus it is unclear how it may bind its substrates and whether it contains a Nudix fold. To obtain insight into this unusual hydrolase, we determined structures of apo, GTP-bound and RNA-bound T. brucei MERS1 to 2.30 Å, 2.45 Å, and 2.60 Å, respectively. The MERS1 structure has a unique fold that indeed contains a Nudix motif. The nucleotide bound structures combined with binding studies reveal that MERS1 shows preference for RNA sequences with a central guanine repeat which it binds in a single-stranded conformation. The apo MERS1 structure indicates that a significant portion of its nucleotide binding site folds upon substrate binding. Finally, a potential interaction region for a binding partner, MERS2, that activates MERS1 was identified. The MERS2-like peptide inserts a glutamate near the missing Nudix acidic residue in the RNA binding pocket, suggesting how the enzyme may be activated. Thus, the combined studies reveal insight into the structure and enzyme properties of MERS1 and its substrate-binding activities.


Assuntos
RNA Mensageiro/química , RNA Mitocondrial/química , Trypanosoma brucei brucei/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Mensageiro/genética , RNA Mitocondrial/genética , RNA de Protozoário/química , RNA de Protozoário/genética , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
12.
RNA ; 26(12): 1862-1881, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32873716

RESUMO

Trypanosome U-insertion/deletion RNA editing in mitochondrial mRNAs involves guide RNAs (gRNAs) and the auxiliary RNA editing substrate binding complex (RESC) and RNA editing helicase 2 complex (REH2C). RESC and REH2C stably copurify with editing mRNAs but the functional interplay between these complexes remains unclear. Most steady-state mRNAs are partially edited and include misedited "junction" regions that match neither pre-mRNA nor fully edited transcripts. Editing specificity is central to mitochondrial RNA maturation and function, but its basic control mechanisms remain unclear. Here we applied a novel nucleotide-resolution RNA-seq approach to examine ribosomal protein subunit 12 (RPS12) and ATPase subunit 6 (A6) mRNA transcripts. We directly compared transcripts associated with RESC and REH2C to those found in total mitochondrial RNA. RESC-associated transcripts exhibited site-preferential enrichments in total and accurate edits. REH2C loss-of-function induced similar substrate-specific and site-specific editing effects in total and RESC-associated RNA. It decreased total editing primarily at RPS12 5' positions but increased total editing at examined A6 3' positions. REH2C loss-of-function caused site-preferential loss of accurate editing in both transcripts. However, changes in total or accurate edits did not necessarily involve common sites. A few 5' nucleotides of the initiating gRNA (gRNA-1) directed accurate editing in both transcripts. However, in RPS12, two conserved 3'-terminal adenines in gRNA-1 could direct a noncanonical 2U-insertion that causes major pausing in 3'-5' progression. In A6, a noncanonical sequence element that depends on REH2C in a region normally targeted by the 3' half of gRNA-1 may hinder early editing progression. Overall, we defined transcript-specific effects of REH2C loss.


Assuntos
Proteínas de Protozoários/metabolismo , Edição de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma/metabolismo , Animais , Proteínas de Protozoários/genética , RNA Guia de Cinetoplastídeos , RNA Mensageiro/genética , RNA Mitocondrial/genética , RNA de Protozoário/genética , RNA-Seq , Especificidade por Substrato , Trypanosoma/genética , Trypanosoma brucei brucei/genética
13.
Subcell Biochem ; 96: 433-450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252739

RESUMO

Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.


Assuntos
Kinetoplastida/genética , RNA Ribossômico/genética , Ribossomos/metabolismo , Animais , Microscopia Crioeletrônica , Células Eucarióticas/metabolismo , Humanos , Kinetoplastida/patogenicidade , Ribossomos/química , Ribossomos/ultraestrutura
14.
J Biol Chem ; 295(8): 2227-2238, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31932305

RESUMO

The transferrin receptor (TfR) of the bloodstream form (BSF) of Trypanosoma brucei is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five N-glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues. TfR binds tomato lectin (TL), specific for N-acetyllactosamine (LacNAc) repeats, and previous studies have shown transport-dependent increases in E6 size consistent with post-glycan processing in the endoplasmic reticulum. Using pulse-chase radiolabeling, peptide-N-glycosidase F treatment, lectin pulldowns, and exoglycosidase treatment, we have now investigated TfR N-glycan and GPI processing. E6 increased ∼5 kDa during maturation, becoming reactive with both TL and Erythrina cristagalli lectin (ECL, terminal LacNAc), indicating synthesis of poly-LacNAc on paucimannose N-glycans. This processing was lost after exoglycosidase treatment and after RNAi-based silencing of TbSTT3A, the oligosaccharyltransferase that transfers paucimannose structures to nascent secretory polypeptides. These results contradict previous structural studies. Minor GPI processing was also observed, consistent with α-galactose addition. However, increasing the spacing between E6 protein and the GPI ω-site (aa 4-7) resulted in extensive post-translational processing of the GPI anchor to a form that was TL/ECL-reactive, suggesting the addition of LacNAc structures, confirmed by identical assays with BiPNHP, a non-N-glycosylated GPI-anchored reporter. We conclude that BSF trypanosomes can modify GPIs by generating structures reminiscent of those present in insect-stage trypanosomes and that steric constraints, not stage-specific expression of glycosyltransferases, regulate GPI processing.


Assuntos
Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicosídeos/metabolismo , Glicosilação , Lectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Receptores da Transferrina/metabolismo , Especificidade por Substrato
15.
RNA ; 25(9): 1177-1191, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221726

RESUMO

Uridine insertion deletion editing in kinetoplastid protozoa requires a complex machinery, a primary component of which is the RNA editing substrate binding complex (RESC). RESC contains two modules termed GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex), although how interactions between these modules and their mRNA and gRNA binding partners are controlled is not well understood. Here, we demonstrate that the ARM/HEAT repeat containing RESC protein, MRB10130, controls REMC association with mRNA- and gRNA-loaded GRBC. High-throughput sequencing analyses show that MRB10130 functions in both initiation and 3' to 5' progression of editing through gRNA-defined domains. Editing intermediates that accumulate upon MRB10130 depletion significantly intersect those in cells depleted of another RESC organizer, MRB7260, but are distinct from those in cells depleted of specific REMC proteins. We present a model in which MRB10130 coordinates numerous protein-protein and protein-RNA interactions during editing progression.


Assuntos
Edição de RNA/genética , Animais , Linhagem Celular , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas de Protozoários/genética , Interferência de RNA/fisiologia , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Uridina/genética
16.
Biochem Soc Trans ; 49(1): 29-39, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439256

RESUMO

Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.


Assuntos
Kinetoplastida/citologia , Microcorpos/fisiologia , Animais , Kinetoplastida/genética , Kinetoplastida/metabolismo , Kinetoplastida/ultraestrutura , Microcorpos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo
17.
J Eukaryot Microbiol ; 68(3): e12846, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33624359

RESUMO

The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.


Assuntos
Trypanosoma brucei brucei , Animais , Ciclo Celular , Núcleo Celular , Estágios do Ciclo de Vida , Mitocôndrias
18.
Parasitology ; 148(10): 1223-1236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33678213

RESUMO

Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host­parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.


Assuntos
Perfilação da Expressão Gênica , Kinetoplastida/genética , Análise de Célula Única , Interações Hospedeiro-Parasita , RNA-Seq
19.
Parasitology ; 148(10): 1119-1124, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120664

RESUMO

The British Society for Parasitology (BSP) holds a biannual symposium devoted to the kinetoplastids, and seeks to cover the full gamut of research into these important organisms, and alternates with the Woods Hole Kinetoplastid Molecular Cell Biology meeting that serves a similar community. While normally embedded within the main BSP Spring meeting, on several occasions the symposium has enjoyed the opportunity of being hosted on mainland Europe. In 2020, the BSP was fortunate to spend some time in Granada in Spain, where a superb meeting with excellent science in a spectacular setting was overshadowed by news of an emerging novel coronavirus. In this editorial, we hope to have captured some of that excellent science and to highlight aspects of the many great papers and reviews in this special issue, as well as provide a few images from the meeting, which we hope for this who attended will bring back some fond memories.


Assuntos
COVID-19 , Leishmaniose , Tripanossomíase , Europa (Continente) , Humanos , SARS-CoV-2 , Espanha
20.
Mol Cell Proteomics ; 18(7): 1271-1284, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30948621

RESUMO

Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.


Assuntos
Leishmania mexicana/genética , Parasitos/genética , Proteoma/metabolismo , Animais , Ontologia Genética , Estágios do Ciclo de Vida , Camundongos Endogâmicos BALB C , Análise de Componente Principal , Proteômica , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA