Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.250
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(6): 1255-1263.e12, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778652

RESUMO

The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Processos Autotróficos/fisiologia , Isótopos de Carbono , Evolução Molecular Direcionada , Escherichia coli/genética , Marcação por Isótopo , Engenharia Metabólica , Análise do Fluxo Metabólico , Mutação/genética
2.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100189

RESUMO

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Glicólise , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Lipogênese , NADP/metabolismo , Via de Pentose Fosfato/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
CA Cancer J Clin ; 74(4): 368-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517462

RESUMO

Multicancer detection (MCD) tests use a single, easily obtainable biospecimen, such as blood, to screen for more than one cancer concurrently. MCD tests can potentially be used to improve early cancer detection, including cancers that currently lack effective screening methods. However, these tests have unknown and unquantified benefits and harms. MCD tests differ from conventional cancer screening tests in that the organ responsible for a positive test is unknown, and a broad diagnostic workup may be necessary to confirm the location and type of underlying cancer. Among two prospective studies involving greater than 16,000 individuals, MCD tests identified those who had some cancers without currently recommended screening tests, including pancreas, ovary, liver, uterus, small intestine, oropharyngeal, bone, thyroid, and hematologic malignancies, at early stages. Reported MCD test sensitivities range from 27% to 95% but differ by organ and are lower for early stage cancers, for which treatment toxicity would be lowest and the potential for cure might be highest. False reassurance from a negative MCD result may reduce screening adherence, risking a loss in proven public health benefits from standard-of-care screening. Prospective clinical trials are needed to address uncertainties about MCD accuracy to detect different cancers in asymptomatic individuals, whether these tests can detect cancer sufficiently early for effective treatment and mortality reduction, the degree to which these tests may contribute to cancer overdiagnosis and overtreatment, whether MCD tests work equally well across all populations, and the appropriate diagnostic evaluation and follow-up for patients with a positive test.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Humanos , Neoplasias/diagnóstico , Detecção Precoce de Câncer/métodos , Pesquisa Translacional Biomédica , Sensibilidade e Especificidade , Programas de Rastreamento/métodos
4.
Mol Cell ; 83(21): 3766-3772, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922871

RESUMO

Building a diverse laboratory that is equitable is critical for the retention of talent and the growth of trainees professionally and personally. Here, we outline several strategies including enhancing understanding of cultural competency and humility, establishing laboratory values, and developing equitable laboratory structures to create an inclusive laboratory environment to enable trainees to achieve their highest success.


Assuntos
Diversidade, Equidade, Inclusão , Laboratórios
5.
Trends Biochem Sci ; 48(1): 5-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563657

RESUMO

Scientific discovery has advanced human society in countless ways, but research requires the expenditure of energy and resources. This Scientific Life article details one laboratory's efforts to reduce the environmental impact of wet-lab research and provides a series of resources to improve lab sustainability.

6.
Proc Natl Acad Sci U S A ; 121(3): e2310039121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215182

RESUMO

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling. We perform fluid injection experiments on quartz-rich sandstone samples containing either a smooth or a rough fault. We find that geometrical roughness slows down injection-induced fault slip and reduces macroscopic slip velocities and fault slip-weakening rates. Stress heterogeneity and roughness control hypocenter distribution, frequency-magnitude characteristics, and source mechanisms of injection-induced acoustic emissions (AEs) (analogous to natural seismicity). In contrast to smooth faults where injection-induced AEs are uniformly distributed, slip on rough faults produces spatially localized AEs with pronounced non-double-couple source mechanisms. We demonstrate that these clustered AEs occur around highly stressed asperities where induced local slip rates are higher, accompanied by lower Gutenberg-Richter b-values. Our findings suggest that real-time monitoring of induced microseismicity during fluid injection may allow identifying progressive localization of seismic activity and improve forecasting of runaway events.

7.
Immunol Rev ; 313(1): 225-238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305168

RESUMO

Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Humanos , Proteínas do Sistema Complemento/genética , Prognóstico , Via Alternativa do Complemento/genética
8.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506692

RESUMO

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Assuntos
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiologia , Detecção Precoce de Câncer , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética
9.
Proc Natl Acad Sci U S A ; 120(15): e2218835120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011218

RESUMO

The genomic diversity across strains of a species forms the genetic basis for differences in their behavior. A large-scale assessment of sequence variation has been made possible by the growing availability of strain-specific whole-genome sequences (WGS) and with the advent of large-scale databases of laboratory-acquired mutations. We define the Escherichia coli "alleleome" through a genome-scale assessment of amino acid (AA) sequence diversity in open reading frames across 2,661 WGS from wild-type strains. We observe a highly conserved alleleome enriched in mutations unlikely to affect protein function. In contrast, 33,000 mutations acquired in laboratory evolution experiments result in more severe AA substitutions that are rarely achieved by natural selection. Large-scale assessment of the alleleome establishes a method for the quantification of bacterial allelic diversity, reveals opportunities for synthetic biology to explore novel sequence space, and offers insights into the constraints governing evolution.


Assuntos
Escherichia coli , Variação Genética , Mutação , Escherichia coli/genética , Genoma Bacteriano/genética , Sequência de Aminoácidos
10.
Plant J ; 118(2): 584-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141174

RESUMO

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Assuntos
Germinação , Plântula , Fenótipo , Germinação/fisiologia , Sementes , Processamento de Imagem Assistida por Computador
11.
Annu Rev Genomics Hum Genet ; 23: 653-673, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044907

RESUMO

Molecular diagnostic tests enable rapid analysis of genomic and proteomic markers. These tests are subject to diverging premarket access and postmarket surveillance requirements and mechanisms in the United States and the European Union. Each of these jurisdictions has its own challenges in keeping the regulations up to date with technological developments. A specific area of attention is that of laboratory-developed tests in the United States and health institution in-house-produced tests in the European Union, for which the United States and the European Union have markedly different regulatory approaches. Both jurisdictions have specific but differing requirements for the use of test samples and test-related data under their rules regarding the protection of (personal) health data, which can cause complexity when moving samples or sample-related data from one jurisdiction to the other.


Assuntos
Patologia Molecular , Proteômica , União Europeia , Humanos , Estados Unidos , United States Food and Drug Administration
12.
EMBO J ; 40(22): e108225, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34605051

RESUMO

Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.


Assuntos
Epistasia Genética , Microtúbulos/metabolismo , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Aneuploidia , Cromossomos Fúngicos , Regulação Fúngica da Expressão Gênica , Microtúbulos/genética , Polimerização , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequenciamento Completo do Genoma
13.
J Virol ; 98(4): e0166323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470106

RESUMO

Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.


Assuntos
Norovirus , Humanos , Antivirais/farmacologia , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Gastroenterite/tratamento farmacológico , Gastroenterite/virologia , Intestinos/virologia , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Animais , Organoides/efeitos dos fármacos , Organoides/virologia , Cultura de Vírus
14.
J Med Genet ; 61(4): 305-312, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38154813

RESUMO

BACKGROUND: National and international amalgamation of genomic data offers opportunity for research and audit, including analyses enabling improved classification of variants of uncertain significance. Review of individual-level data from National Health Service (NHS) testing of cancer susceptibility genes (2002-2023) submitted to the National Disease Registration Service revealed heterogeneity across participating laboratories regarding (1) the structure, quality and completeness of submitted data, and (2) the ease with which that data could be assembled locally for submission. METHODS: In May 2023, we undertook a closed online survey of 51 clinical scientists who provided consensus responses representing all 17 of 17 NHS molecular genetic laboratories in England and Wales which undertake NHS diagnostic analyses of cancer susceptibility genes. The survey included 18 questions relating to 'next-generation sequencing workflow' (11), 'variant classification' (3) and 'phenotypical context' (4). RESULTS: Widely differing processes were reported for transfer of variant data into their local LIMS (Laboratory Information Management System), for the formatting in which the variants are stored in the LIMS and which classes of variants are retained in the local LIMS. Differing local provisions and workflow for variant classifications were also reported, including the resources provided and the mechanisms by which classifications are stored. CONCLUSION: The survey responses illustrate heterogeneous laboratory workflow for preparation of genomic variant data from local LIMS for centralised submission. Workflow is often labour-intensive and inefficient, involving multiple manual steps which introduce opportunities for error. These survey findings and adoption of the concomitant recommendations may support improvement in laboratory dataflows, better facilitating submission of data for central amalgamation.


Assuntos
Laboratórios , Neoplasias , Humanos , Fluxo de Trabalho , Medicina Estatal , Genômica , Reino Unido
15.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992142

RESUMO

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Animais , Fímbrias Bacterianas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Laboratórios , Camundongos , Porphyromonas gingivalis/patogenicidade , Transcriptoma , Virulência/genética , Fatores de Virulência
16.
Proc Natl Acad Sci U S A ; 119(30): e2118262119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858453

RESUMO

Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Resistência a Vancomicina , Vancomicina , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Evolução Molecular , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Oxacilina/química , Oxacilina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Vancomicina/química , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Resistência a Vancomicina/genética , Virulência/genética
17.
Proc Natl Acad Sci U S A ; 119(29): e2203199119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858350

RESUMO

Lithium-ion battery (LIB) is a broadly adopted technology for energy storage. With increasing demands to improve the rate capability, cyclability, energy density, safety, and cost efficiency, it is crucial to establish an in-depth understanding of the detailed structural evolution and cell-degradation mechanisms during battery operation. Here, we present a laboratory-based high-resolution and high-throughput X-ray micro-computed laminography approach, which is capable of in situ visualizing of an industry-relevant lithium-ion (Li-ion) pouch cell with superior detection fidelity, resolution, and reliability. This technique enables imaging of the pouch cell at a spatial resolution of 0.5 µm in a laboratory system and permits the identification of submicron features within cathode and anode electrodes. We also demonstrate direct visualization of the lithium plating in the imaged pouch cell, which is an important phenomenon relevant to battery fast charging and low-temperature cycling. Our development presents an avenue toward a thorough understanding of the correlation among multiscale structures, chemomechanical degradation, and electrochemical behavior of industry-scale battery pouch cells.

18.
BMC Biol ; 22(1): 35, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355587

RESUMO

BACKGROUND: Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS: Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS: C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.


Assuntos
Comportamento Animal , Comportamento Social , Camundongos , Masculino , Animais , Feminino , Camundongos Endogâmicos C57BL , Territorialidade , Estrutura Social
19.
J Infect Dis ; 229(Supplement_1): S34-S39, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578049

RESUMO

Respiratory syncytial virus (RSV) is a common pathogen causing mostly cold-like symptoms, but in very young infants and elderly individuals it can lead to severe disease and even death. There are currently promising developments both in vaccine development and in therapeutics that are expected to be approved soon. To get an impression within European countries of the laboratory diagnostics and surveillance activities, in anticipation of these developments, we queried the members of the European Respiratory Syncytial Virus Laboratory Network (RSV-LabNet, under the umbrella of the PROMISE project) via an online survey. The answers from the consortium members showed scattered monitoring and the application of a broad array of techniques in the laboratories. A majority of the members expressed strong interest in harmonization and collaboration for setting up surveillance programs and the need for sharing laboratory protocols. The additional value of RSV whole-genome sequencing is broadly appreciated, but implementation requires further development and closer collaboration. The RSV-LabNet can have an important responsibility in establishing contacts and exchange of expertise and providing a platform for communication to advance diagnostics, preparedness, and surveillance.


Assuntos
Laboratórios , Vírus Sincicial Respiratório Humano , Idoso , Lactente , Humanos , Vírus Sincicial Respiratório Humano/genética , Europa (Continente)/epidemiologia , Sequenciamento Completo do Genoma
20.
J Infect Dis ; 230(Supplement_1): S70-S75, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140722

RESUMO

Powassan virus is a tick-borne flavivirus that can cause severe neuroinvasive disease, with areas of endemicity in the Northeast and Midwest United States, Canada, and Russia. Diagnosis is challenging and relies on a high index of suspicion and choosing the right test based on duration of infection and the patient's immune status. This review covers laboratory testing for Powassan virus, including historical considerations, modern options, and methods being developed in the research space.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , História do Século XXI , História do Século XX , Animais , Canadá/epidemiologia , Anticorpos Antivirais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA