Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679585

RESUMO

Aiming at the current lane line detection algorithm in complex traffic scenes, such as lane lines being blocked by shadows, blurred roads, and road sparseness, which lead to low lane line detection accuracy and poor real-time detection speed, this paper proposes a lane line detection algorithm based on instance segmentation. Firstly, the improved lightweight network RepVgg-A0 is used to encode road images, which expands the receptive field of the network; secondly, a multi-size asymmetric shuffling convolution model is proposed for the characteristics of sparse and slender lane lines, which enhances the ability to extract lane line features; an adaptive upsampling model is further proposed as a decoder, which upsamples the feature map to the original resolution for pixel-level classification and detection, and adds the lane line prediction branch to output the confidence of the lane line; and finally, the instance segmentation-based lane line detection algorithm is successfully deployed on the embedded platform Jetson Nano, and half-precision acceleration is performed using NVDIA's TensorRT framework. The experimental results show that the Acc value of the lane line detection algorithm based on instance segmentation is 96.7%, and the FPS is 77.5 fps/s. The detection speed deployed on the embedded platform Jetson Nano reaches 27 fps/s.


Assuntos
Aceleração , Algoritmos
2.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448087

RESUMO

Road scene understanding is crucial to the safe driving of autonomous vehicles. Comprehensive road scene understanding requires a visual perception system to deal with a large number of tasks at the same time, which needs a perception model with a small size, fast speed, and high accuracy. As multi-task learning has evident advantages in performance and computational resources, in this paper, a multi-task model YOLO-Object, Drivable Area, and Lane Line Detection (YOLO-ODL) based on hard parameter sharing is proposed to realize joint and efficient detection of traffic objects, drivable areas, and lane lines. In order to balance tasks of YOLO-ODL, a weight balancing strategy is introduced so that the weight parameters of the model can be automatically adjusted during training, and a Mosaic migration optimization scheme is adopted to improve the evaluation indicators of the model. Our YOLO-ODL model performs well on the challenging BDD100K dataset, achieving the state of the art in terms of accuracy and computational efficiency.


Assuntos
Veículos Autônomos , Aprendizagem , Registros , Software
3.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991649

RESUMO

As technology continues to develop, computer vision (CV) applications are becoming increasingly widespread in the intelligent transportation systems (ITS) context. These applications are developed to improve the efficiency of transportation systems, increase their level of intelligence, and enhance traffic safety. Advances in CV play an important role in solving problems in the fields of traffic monitoring and control, incident detection and management, road usage pricing, and road condition monitoring, among many others, by providing more effective methods. This survey examines CV applications in the literature, the machine learning and deep learning methods used in ITS applications, the applicability of computer vision applications in ITS contexts, the advantages these technologies offer and the difficulties they present, and future research areas and trends, with the goal of increasing the effectiveness, efficiency, and safety level of ITS. The present review, which brings together research from various sources, aims to show how computer vision techniques can help transportation systems to become smarter by presenting a holistic picture of the literature on different CV applications in the ITS context.

4.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486424

RESUMO

Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S × 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S × 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA