Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microsc Microanal ; 29(4): 1328-1349, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488830

RESUMO

Fusion-based additive manufacturing techniques leverage rapid solidification (RS) conditions to create parts with complex geometries, unique microscale/nanoscale morphological features, and elemental segregation. Three custom composition stainless steel alloys with varying chromium equivalence to nickel equivalence ratio (Creq/Nieq) between 1.53 and 1.95 were processed using laser powder bed fusion (LPBF) and/or two-piston splat quenching (SQ) to produce solidification rates estimated between 0.4 and 0.8 m/s. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to collect high-resolution images, electron backscatter diffraction (EBSD) phase identification, and measure cellular segregation. Similar features were observed in both LPBF and SQ samples including phase and microstructure, nanoscale oxide particles, cell size, and segregation behavior. However, dislocation pileup was observed along the cell boundaries only in the LPBF austenite solidified microstructure. Targeted adjustment of the SQ feedstock Cr and Ni concentrations, within the ASTM A240 specification for 316L resulted in no observable impact on the cell size, oxide particle size, or magnitude of segregation. Also, the amount of Ni segregation in the ferrite solidified microstructures did not significantly differ, regardless of Cr/Nieq or processing technique. SQ is demonstrated as capable of simulating RS rates and microstructures similar to LPBF for use as an alternative screening tool for new RS alloy compositions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30996585

RESUMO

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a predefined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process, and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element (FE) model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles' contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multipoint optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m K at 500°C. [DOI: 10.1115/1.4040877].

3.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689899

RESUMO

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

4.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893829

RESUMO

To quantitatively evaluate the effect of the process parameters and the material properties on the temperature in laser powder bed fusion (LPBF), this paper proposed a sensitivity analysis of the temperature based on the validated prediction model. First, three different heat source modes-point heat source, Gaussian surface heat source, and Gaussian body heat source-were introduced. Then, a case study of Ti6Al4V is conducted to determine the suitable range of heat source density for the three different heat source models. Based on this, the effects of laser processing parameters and material thermophysical parameters on the temperature field and molten pool size are quantitatively discussed based on the Gaussian surface heat source. The results indicate that the Gaussian surface heat source and the Gaussian body heat source offer higher prediction accuracy for molten pool width compared to the point heat source under similar processing parameters. When the laser energy density is between 40 and 70 J/mm3, the prediction accuracy of the Gaussian surface heat source and the body heat source is similar, and the average prediction errors are 4.427% and 2.613%, respectively. When the laser energy density is between 70 and 90 J/mm3, the prediction accuracy of the Gaussian body heat source is superior to that of the Gaussian surface heat source. Among the influencing factors, laser power exerts the greatest influence on the temperature field and molten pool size, followed by scanning speed. In particular, laser power and scan speed contribute 38.9% and 23.5% to the width of the molten pool, 39.1% and 19.6% to the depth of the molten pool, and 38.9% and 21.5% to the maximum temperature, respectively.

5.
3D Print Addit Manuf ; 11(1): 171-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389677

RESUMO

In this work, the role of the binder volumetric fraction used on the consolidation process of Sm-Fe-N-based bonded magnets obtained via the laser powder bed fusion technique has been investigated and explained. The magnetic samples have been obtained via the Selective Laser Sintering (SLS) process, using a mixture of polyamide-12 powder (PA12, DuraForm PA2200) and isotropic Sm-Fe-N melt-spun ribbons (Daido Electronics, Inc.) as feedstocks. The binder content has been varied between 34% and 65% vol. Geometrical density values increased systematically as the PA12 content was increased, reaching a maximum value of ρ = 3.35 g/cm3 (60% vol.), which represents 89% of a fully dense composite. In this composition, the maximum magnetic properties values have been achieved, Jr = 369 mT and (BH)max = 24 kJ/m3. A further increase on the PA12 fraction up to 65% vol. resulted on magnetic samples with 97% relative density, but at the expense of magnetic performance. The formation of a continuous polymeric matrix has been observed via Scanning Electron Microscopy (SEM) analysis when PA12 fraction was on the interval between 60% and 65% vol., not observable for the other explored conditions. Volumetric binder fractions comparable with other published works, which used spherical particles as raw materials for feedstock production, showed inadequate consolidation and required adjustments for proper densification.

6.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591549

RESUMO

This research focuses on analysing the 18Ni300 maraging steel produced through laser powder bed fusion. Specifically, it aims to examine the phase components using X-ray diffraction, the microstructure through scanning electron microscopy, and the hardness of the different structures present in the manufactured material. The primary goal is to meticulously analyse the material and its microstructures. By doing so, a correlation between the hardness and each structure type, be it cellular or columnar, can be established. This will allow us to pinpoint any defects in the material before any surface chemical treatment is carried out and facilitate a thorough examination of its microstructure. A consistent pattern emerges across the samples through systematic measurement of microhardness distribution in various locations and detailed examination of the structure. The findings of the study reveal that the hardness of cellular and columnar structures exhibits a significant variation based on the location of the measurement about cell boundaries. The hardness value is notably higher in the combination of cellular and multiple layers, as the data indicate.

7.
Materials (Basel) ; 17(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203328

RESUMO

Research into the processability of NiTiHf high-temperature shape memory alloys (HTSMAs) via laser powder bed fusion (LPBF) is limited; nevertheless, these alloys show promise for applications in extreme environments. This study aims to address this limitation by investigating the printability of four NiTiHf alloys with varying Hf content (1, 2, 15, and 20 at. %) to assess their suitability for LPBF applications. Solidification cracking is one of the main limiting factors in LPBF processes, which occurs during the final stage of solidification. To investigate the effect of alloy composition on printability, this study focuses on this defect via a combination of computational modeling and experimental validation. To this end, solidification cracking susceptibility is calculated as Kou's index and Scheil-Gulliver model, implemented in Thermo-Calc/2022a software. An innovative powder-free experimental method through laser remelting was conducted on bare NiTiHf ingots to validate the parameter impacts of the LPBF process. The result is the processability window with no cracking likelihood under diverse LPBF conditions, including laser power and scan speed. This comprehensive investigation enhances our understanding of the processability challenges and opportunities for NiTiHf HTSMAs in advanced engineering applications.

8.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730911

RESUMO

Tungsten (W) and W alloys are considered as primary candidates for plasma-facing components (PFCs) that must perform in severe environments in terms of temperature, neutron fluxes, plasma effects, and irradiation bombardment. These materials are notoriously difficult to produce using additive manufacturing (AM) methods due to issues inherent to these techniques. The progress on applying AM techniques to W-based PFC applications is reviewed and the technical issues in selected manufacturing methods are discussed in this review. Specifically, we focus on the recent development and applications of laser powder bed fusion (LPBF), electron beam melting (EBM), and direct energy deposition (DED) in W materials due to their abilities to preserve the properties of W as potential PFCs. Additionally, the existing literature on irradiation effects on W and W alloys is surveyed, with possible solutions to those issues therein addressed. Finally, the gaps in possible future research on additively manufactured W are identified and outlined.

9.
Materials (Basel) ; 16(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770047

RESUMO

Recent advances in additive manufacturing have provided more freedom in the design of metal parts; hence, the prototyping of fluid machines featuring extremely complex geometries has been investigated extensively. The fabrication of fluid machines via additive manufacturing requires significant attention to part stability; however, studies that predict regions with a high risk of collapse are few. Therefore, a novel algorithm that can detect collapse regions precisely is proposed herein. The algorithm reflects the support span over the faceted surface via propagation and invalidates overestimated collapse regions based on the overhang angle. A heat exchanger model with an extremely complex internal space is adopted to validate the algorithm. Three samples from the model are extracted and their prototypes are fabricated via laser powder bed fusion. The results yielded by the fabricated samples and algorithm with respect to the sample domain are compared. Regions of visible collapse identified on the surface of the fabricated samples are predicted precisely by the algorithm. Thus, the supporting span reflected by the algorithm provides an extremely precise prediction of collapse.

10.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763874

RESUMO

For NiTi alloys prepared by the Laser Powder Bed Fusion (LPBF), changes in the building directions will directly change the preferred orientation and thus directly affect the smart properties, such as superelasticity, as well as change the distribution state of defects and impurity elements to affect the phase transformation behaviour, which in turn affects the smart properties at different temperatures. In this study, the relationship between impurity elements, the building directions, and functional properties; the effects of building directions on the crystallographic anisotropy; phase composition; superelastic properties; microhardness; geometrically necessary dislocation (GND) density; and impurity element content of NiTi SMAs fabricated by LPBF were systematically studied. Three building directions measured from the substrate, namely, 0°, 45° and 90°, were selected, and three sets of cylindrical samples were fabricated with the same process parameters. Along the building direction, a strong <100>//vertical direction (VD) texture was formed for all the samples. Because of the difference in transformation temperature, when tested at 15 °C, the sample with the 45° orientation possessed the highest strain recovery of 3.2%. When tested at the austenite phase transformation finish temperature (Af)+10 °C, the 90° sample had the highest strain recovery of 5.83% and a strain recovery rate of 83.3%. The sample with the 90° orientation presented the highest microhardness, which was attributed to its high dislocation density. Meanwhile, different building directions had an effect on the contents of O, C, and N impurity elements, which affected the transformation temperature by changing the Ni/Ti ratio. This study innovatively studied the impurity element content and GND densities of compressive samples with three building directions, providing theoretical guidance for LPBFed NiTi SMA structural parts.

11.
Materials (Basel) ; 16(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374616

RESUMO

Invar36 alloy is a low expansion alloy, and the triply periodic minimal surfaces (TPMS) structures have excellent lightweight, high energy absorption capacity and superior thermal and acoustic insulation properties. It is, however, difficult to manufacture by traditional processing methods. Laser powder bed fusion (LPBF) as a metal additive manufacturing technology, is extremely advantageous for forming complex lattice structures. In this study, five different TPMS cell structures, Gyroid (G), Diamond (D), Schwarz-P (P), Lidinoid (L), and Neovius (N) with Invar36 alloy as the material, were prepared using the LPBF process. The deformation behavior, mechanical properties, and energy absorption efficiency of these structures under different load directions were studied, and the effects and mechanisms of structure design, wall thickness, and load direction were further investigated. The results show that except for the P cell structure, which collapsed layer by layer, the other four TPMS cell structures all exhibited uniform plastic collapse. The G and D cell structures had excellent mechanical properties, and the energy absorption efficiency could reach more than 80%. In addition, it was found that the wall thickness could adjust the apparent density, relative platform stress, relative stiffness, energy absorption, energy absorption efficiency, and deformation behavior of the structure. Printed TPMS cell structures have better mechanical properties in the horizontal direction due to intrinsic printing process and structural design.

12.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297069

RESUMO

Additive manufacturing, including laser powder bed fusion, offers possibilities for the production of materials with properties comparable to conventional technologies. The main aim of this paper is to describe the specific microstructure of 316L stainless steel prepared using additive manufacturing. The as-built state and the material after heat treatment (solution annealing at 1050 °C and 60 min soaking time, followed by artificial aging at 700 °C and 3000 min soaking time) were analyzed. A static tensile test at ambient temperature, 77 K, and 8 K was performed to evaluate the mechanical properties. The characteristics of the specific microstructure were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The stainless steel 316L prepared using laser powder bed fusion consisted of a hierarchical austenitic microstructure, with a grain size of 25 µm as-built up to 35 µm after heat treatment. The grains predominantly contained fine 300-700 nm subgrains with a cellular structure. It was concluded that after the selected heat treatment there was a significant reduction in dislocations. An increase in precipitates was observed after heat treatment, from the original amount of approximately 20 nm to 150 nm.

13.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445046

RESUMO

The development of new efficient, economical, and safe methods for strengthening the working surfaces of parts is an important task in the field of improving the reliability and resourcefulness of critical equipment and structures. In the present paper, laser boronizing is investigated as an alternative method for improving the wear resistance of maraging steel parts manufactured by laser powder bed fusion (LPBF). After LPBF, the specimens' surface was covered with an amorphous boron paste (0.03-0.6 mm) and laser processed with a continuous-wave fiber laser in melting mode (λ-1070 nm; power-300 W; spot Ø-1.0 mm) at 500-1500 mm/min laser beam scanning speeds. Scanning electron microscopy, X-ray microanalysis, Knoop hardness, and dry sliding wear tests were applied to investigate the geometry, microstructure, hardness and its distribution, heat-affected zones, wear resistance, and wear mechanism of the alloyed layers. The boronized layers of thickness ~280-520 µm with microstructure from hypoeutectic to borides' mixture were obtained, whose hardness varied from ~490 to ~2200 HK0.2. With laser boronizing, the wear resistance was improved up to ~7.5 times as compared with aged LPBF samples. In further method development, the problem of thermal cracking and softening of the heat-affected zone should be solved.

14.
Materials (Basel) ; 16(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37512345

RESUMO

Postprocessing is essential for improving titanium aluminide (TiAl) microstructure and part quality after using the laser powder bed fusion (L-PBF) method. It has been reported that Ti-48Al-2Cr-2Nb (%at) processed by L-PBF has internal defects and low fracture toughness. Microstructure control by heat treatment (HT) showed a significant improvement in the ductility of the material. Alternatively, hot isostatic pressing (HIPing) could be applied to reduce the residual stresses and internal defects formed during the L-PBF. Combining the benefits of these two subsequent processes into a single predetermined process is appealing for Ti-48Al-2Cr-2Nb (%at) to minimize cost. This work presents a novel strategy to postprocess L-PBF TiAl by applying combined heat treatment and hot isostatic pressing in one process, namely HT-HIP. The process includes three cycles with different conditions (i.e., temperature, time, and pressure). These conditions were determined to achieve improved part quality and microstructure. The results show that the tensile residual stresses decreased from a peak of 249 MPa in the as-built sample to compressive stresses that peaked at -90 MPa after the HT-HIP process. The number and size of internal defects could be greatly reduced. The defects were transformed into a regular spherical shape, which is good in terms of fatigue strength. Additionally, a duplex microstructure with lamellar α2/γ colonies could be introduced for better ductility. Different levels of duplex microstructure could be achieved along with the process cycles. The grain structure using EBSD analysis showed refined equiaxed grains, which demonstrate better strength after the HT-HIP process. Twinning boundaries were also observed in the HT-HIP sample. The grain orientation tendency to the build direction significantly reduced after the HT-HIP process. The nanoindentation test was applied to evaluate the nanohardness of the as-built and HT-HIP samples. It could be demonstrated that the nanohardness is dependent on the formed phases and lamellar density inside the grains. The mean hardness value was 8.19 GPa for the as-built sample, while it was 5.48 GPa for the HT-HIP sample.

15.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834631

RESUMO

The thermal diffusivity of powder bed plays a crucial role in laser powder bed fusion (LPBF) additive manufacturing. The mechanical properties of the parts built by LPBF are immensely influenced by the thermal properties of the powder bed. This study aims to measure the thermal diffusivity of metallic powder, nickel-based super alloy Inconel718 (IN718), in LPBF using laser flash three-layered analysis in a DLF1600 instrument, which incorporates a special powder cell to encapsulate the powdered sample. Measurements were performed at different temperatures. The thermal diffusivity of several reference samples was measured for the purpose of validating the test results, and it was compared to published data for identical measures. It was observed that experimental results for powder samples were smaller than the actual thermal diffusivity of the sample. R software analysis was used to analyze test data in order to obtain powder thermal diffusivity values that were close to the actual values.

16.
Materials (Basel) ; 16(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049118

RESUMO

Laser powder bed fusion (LPBF) additive manufacturing (AM) has been adopted by various industries as a novel manufacturing technology. Powder spreading is a crucial part of the LPBF AM process that defines the quality of the fabricated objects. In this study, the impacts of various input parameters on the spread of powder density and particle distribution during the powder spreading process are investigated using the DEM (discrete element method) simulation tool. The DEM simulations extend over several powder layers and are used to analyze the powder particle packing density variation in different layers and at different points along the longitudinal spreading direction. Additionally, this research covers experimental measurements of the density of the powder packing and the powder particle size distribution on the construction plate.

17.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143706

RESUMO

Because the laser powder bed fusion process is generally completed in a confined space and in a very short time, it is difficult to study material oxidation during this process using traditional methods. To address this knowledge gap, in this work, we used molecular dynamics (MDs) based on a reaction force field (ReaxFF) to clarify the atomic-level interaction mechanism between metal atoms and oxygen molecules during laser powder bed fusion. The ReaxFF potential energy model has variable charges that can dynamically handle charge changes between atoms and the breaking and formation of chemical bonds that occur during oxidation reactions. We investigated the effects of laser power, scanning speed, region position, and oxygen concentration on powder oxidation. The results show that the laser power and scanning speed affected the oxidation degree by changing the energy input density, and the oxidation degree increased with the energy input density. Different forms of oxidation occurred near the melt channel due to the existence of a temperature gradient, and the degree of oxidation increased with the temperature. Atoms in the metal powder model underwent selective oxidation, which was related to the potential energy of their atomic position. A larger potential energy made it easier for iron atoms to overcome the energy barrier during the initial stage of oxidation, making them easier to oxidize.

18.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744133

RESUMO

The additive manufacturing (AM) of innovative lattice structures with unique mechanical properties has received widespread attention due to the capability of AM processes to fabricate freeform and intricate structures. The most common way to characterize the additively manufactured lattice structures is via the uniaxial compression test. However, although there are many applications for which lattice structures are designed for bending (e.g., sandwich panels cores and some medical implants), limited attention has been paid toward investigating the flexural behavior of metallic AM lattice structures with tunable internal architectures. The purpose of this study was to experimentally investigate the flexural behavior of AM Ti-6Al-4V lattice structures with graded density and hybrid Poisson's ratio (PR). Four configurations of lattice structure beams with positive, negative, hybrid PR, and a novel hybrid PR with graded density were manufactured via the laser powder bed fusion (LPBF) AM process and tested under four-point bending. The manufacturability, microstructure, micro-hardness, and flexural properties of the lattices were evaluated. During the bending tests, different failure mechanisms were observed, which were highly dependent on the type of lattice geometry. The best response in terms of absorbed energy was obtained for the functionally graded hybrid PR (FGHPR) structure. Both the FGHPR and hybrid PR (HPR) structured showed a 78.7% and 62.9% increase in the absorbed energy, respectively, compared to the positive PR (PPR) structure. This highlights the great potential for FGHPR lattices to be used in protective devices, load-bearing medical implants, and energy-absorbing applications.

19.
Materials (Basel) ; 15(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556731

RESUMO

In laser powder bed fusion (L-PBF), most powders are not melted in the chamber and collected after the printing process. Powder reuse is appreciable without sacrificing the mechanical properties of target components. To understand the influences of powder reuse on mechanical performance, a nickel-based superalloy, IN738LC, was investigated. Powder morphology, microstructure and chemical compositions of virgin and reused powders were characterized. An increase in oxygen content, generally metallic oxides, was located on the surface of powders. Monotonic tensile and cyclic fatigue were tested. Negligible deterioration in strength and tensile ductility were found, while scattered fatigue performance with regard to fatigue life was shown. Deformation and fatigue crack propagation mechanisms were discussed for describing the powder degradation effects.

20.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363176

RESUMO

In order to track the free interface of the melt pool and understand the evolution of the melt pool, the flow of fluid, and the interface behavior of gas and liquid, a physical model is developed by using the VOF method in this paper. Its characteristics are a combined heat source model, including a parabolic rotation and a cylindrical distribution, and a powder bed stochastic distributed model with powder particle size. The unit interface between the metallic and gas phase in the laser-powder interaction zone can only be loaded by the heat source. Only the first and second laser scanning tracks are simulated to reduce the calculation time. The simulation results show that process parameters such as laser power and scanning speed have significant effects on the fluid flow and surface morphology in the melt pool, which are in good agreement with the experimental results. Compared with the first track, the second track has larger melt pool geometry, higher melt temperature, and faster fluid flow. The melt flows intensely at the initial position due to the high flow rate in the limited melt space. Because there is enough space for the metal flow, the second track can obtain smooth surface morphology more easily compared to the first track. The melt pool temperature at the laser beam center fluctuates during the laser scanning process. This depends on the effects of the interaction between heat conduction or heat accumulation or the interaction between heat accumulation and violent fluid flow. The temperature distribution and fluid flow in the melt pool benefit the analysis and understanding of the evolution mechanism of the melt pool geometry and surface topography and further allow regulation of the L-PBF process of Ti6Al4V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA