Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850487

RESUMO

Leaf numbers are vital in estimating the yield of crops. Traditional manual leaf-counting is tedious, costly, and an enormous job. Recent convolutional neural network-based approaches achieve promising results for rosette plants. However, there is a lack of effective solutions to tackle leaf counting for monocot plants, such as sorghum and maize. The existing approaches often require substantial training datasets and annotations, thus incurring significant overheads for labeling. Moreover, these approaches can easily fail when leaf structures are occluded in images. To address these issues, we present a new deep neural network-based method that does not require any effort to label leaf structures explicitly and achieves superior performance even with severe leaf occlusions in images. Our method extracts leaf skeletons to gain more topological information and applies augmentation to enhance structural variety in the original images. Then, we feed the combination of original images, derived skeletons, and augmentations into a regression model, transferred from Inception-Resnet-V2, for leaf-counting. We find that leaf tips are important in our regression model through an input modification method and a Grad-CAM method. The superiority of the proposed method is validated via comparison with the existing approaches conducted on a similar dataset. The results show that our method does not only improve the accuracy of leaf-counting, with overlaps and occlusions, but also lower the training cost, with fewer annotations compared to the previous state-of-the-art approaches.The robustness of the proposed method against the noise effect is also verified by removing the environmental noises during the image preprocessing and reducing the effect of the noises introduced by skeletonization, with satisfactory outcomes.


Assuntos
Produtos Agrícolas , Grão Comestível , Redes Neurais de Computação , Folhas de Planta , Esqueleto
2.
Sensors (Basel) ; 21(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640979

RESUMO

A non-destructive method using machine vision is an effective way to monitor plant growth. However, due to the lighting changes and complicated backgrounds in outdoor environments, this becomes a challenging task. In this paper, a low-cost camera system using an NoIR (no infrared filter) camera and a Raspberry Pi module is employed to detect and count the leaves of Ramie plants in a greenhouse. An infrared camera captures the images of leaves during the day and nighttime for a precise evaluation. The infrared images allow Otsu thresholding to be used for efficient leaf detection. A combination of numbers of thresholds is introduced to increase the detection performance. Two approaches, consisting of static images and image sequence methods are proposed. A watershed algorithm is then employed to separate the leaves of a plant. The experimental results show that the proposed leaf detection using static images achieves high recall, precision, and F1 score of 0.9310, 0.9053, and 0.9167, respectively, with an execution time of 551 ms. The strategy of using sequences of images increases the performances to 0.9619, 0.9505, and 0.9530, respectively, with an execution time of 516.30 ms. The proposed leaf counting achieves a difference in count (DiC) and absolute DiC (ABS_DiC) of 2.02 and 2.23, respectively, with an execution time of 545.41 ms. Moreover, the proposed method is evaluated using the benchmark image datasets, and shows that the foreground-background dice (FBD), DiC, and ABS_DIC are all within the average values of the existing techniques. The results suggest that the proposed system provides a promising method for real-time implementation.


Assuntos
Algoritmos , Folhas de Planta , Plantas
3.
Sensors (Basel) ; 20(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287100

RESUMO

The use of deep neural networks (DNNs) in plant phenotyping has recently received considerable attention. By using DNNs, valuable insights into plant traits can be readily achieved. While these networks have made considerable advances in plant phenotyping, the results are processed too slowly to allow for real-time decision-making. Therefore, being able to perform plant phenotyping computations in real-time has become a critical part of precision agriculture and agricultural informatics. In this work, we utilize state-of-the-art object detection networks to accurately detect, count, and localize plant leaves in real-time. Our work includes the creation of an annotated dataset of Arabidopsis plants captured using Cannon Rebel XS camera. These images and annotations have been complied and made publicly available. This dataset is then fed into a Tiny-YOLOv3 network for training. The Tiny-YOLOv3 network is then able to converge and accurately perform real-time localization and counting of the leaves. We also create a simple robotics platform based on an Android phone and iRobot create2 to demonstrate the real-time capabilities of the network in the greenhouse. Additionally, a performance comparison is conducted between Tiny-YOLOv3 and Faster R-CNN. Unlike Tiny-YOLOv3, which is a single network that does localization and identification in a single pass, the Faster R-CNN network requires two steps to do localization and identification. While with Tiny-YOLOv3, inference time, F1 Score, and false positive rate (FPR) are improved compared to Faster R-CNN, other measures such as difference in count (DiC) and AP are worsened. Specifically, for our implementation of Tiny-YOLOv3, the inference time is under 0.01 s, the F1 Score is over 0.94, and the FPR is around 24%. Last, transfer learning using Tiny-YOLOv3 to detect larger leaves on a model trained only on smaller leaves is implemented. The main contributions of the paper are in creating dataset (shared with the research community), as well as the trained Tiny-YOLOv3 network for leaf localization and counting.

4.
Plant J ; 96(4): 880-890, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101442

RESUMO

Direct observation of morphological plant traits is tedious and a bottleneck for high-throughput phenotyping. Hence, interest in image-based analysis is increasing, with the requirement for software that can reliably extract plant traits, such as leaf count, preferably across a variety of species and growth conditions. However, current leaf counting methods do not work across species or conditions and therefore may lack broad utility. In this paper, we present Pheno-Deep Counter, a single deep network that can predict leaf count in two-dimensional (2D) plant images of different species with a rosette-shaped appearance. We demonstrate that our architecture can count leaves from multi-modal 2D images, such as visible light, fluorescence and near-infrared. Our network design is flexible, allowing for inputs to be added or removed to accommodate new modalities. Furthermore, our architecture can be used as is without requiring dataset-specific customization of the internal structure of the network, opening its use to new scenarios. Pheno-Deep Counter is able to produce accurate predictions in many plant species and, once trained, can count leaves in a few seconds. Through our universal and open source approach to deep counting we aim to broaden utilization of machine learning-based approaches to leaf counting. Our implementation can be downloaded at https://bitbucket.org/tuttoweb/pheno-deep-counter.


Assuntos
Aprendizado Profundo , Fenótipo , Folhas de Planta/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Plantas , Software
5.
Sensors (Basel) ; 18(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772666

RESUMO

This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.


Assuntos
Redes Neurais de Computação , Poaceae/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Poaceae/anatomia & histologia , Poaceae/fisiologia , Polygonum/anatomia & histologia , Polygonum/fisiologia
6.
Front Plant Sci ; 13: 844522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665165

RESUMO

Deep learning-based methods have recently provided a means to rapidly and effectively extract various plant traits due to their powerful ability to depict a plant image across a variety of species and growth conditions. In this study, we focus on dealing with two fundamental tasks in plant phenotyping, i.e., plant segmentation and leaf counting, and propose a two-steam deep learning framework for segmenting plants and counting leaves with various size and shape from two-dimensional plant images. In the first stream, a multi-scale segmentation model using spatial pyramid is developed to extract leaves with different size and shape, where the fine-grained details of leaves are captured using deep feature extractor. In the second stream, a regression counting model is proposed to estimate the number of leaves without any pre-detection, where an auxiliary binary mask from segmentation stream is introduced to enhance the counting performance by effectively alleviating the influence of complex background. Extensive pot experiments are conducted CVPPP 2017 Leaf Counting Challenge dataset, which contains images of Arabidopsis and tobacco plants. The experimental results demonstrate that the proposed framework achieves a promising performance both in plant segmentation and leaf counting, providing a reference for the automatic analysis of plant phenotypes.

7.
Data Brief ; 42: 108035, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35313502

RESUMO

This article introduces a dataset of 2 801 images of vegetable crops. Maize (Zea mays), bean (Phaseolus vulgaris) and leek (Allium ampeloprasum) crops at an early stage of development (between 2 and 5 weeks from seeding of transplanting) are supported. Two kinds of annotations are provided: (i) bounding boxes enclosing the crops of interest or their stems, weeds being left apart, and (ii) crop structures in the form of star graphs whose vertices are the plant organs (stems and leaves) and whose edges represent the connections between them. The images have been captured in various production and experimentation plots in France using an acquisition module which controls light conditions. They present a wide variety of soil conditions, weed infestation and growth stages. This dataset can benefit precision hoeing and in-field crop monitoring applications that are based on proximal imagery.

8.
Plants (Basel) ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235529

RESUMO

Drought is a detrimental factor to gaining higher yields in rice (Oryza sativa L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties. Therefore, screening of drought-adaptive genotypes is required with high precision and high throughput. In contemporary emerging science, high throughput plant phenotyping (HTPP) is a crucial technology that attempts to break the bottleneck of traditional phenotyping. In traditional phenotyping, screening significant genotypes is a tedious task and prone to human error while measuring various plant traits. In contrast, owing to the potential advantage of HTPP over traditional phenotyping, image-based traits, also known as i-traits, were used in our study to discriminate 110 genotypes grown for genome-wide association study experiments under controlled (well-watered), and drought-stress (limited water) conditions, under a phenomics experiment in a controlled environment with RGB images. Our proposed framework non-destructively estimated drought-adaptive plant traits from the images, such as the number of leaves, convex hull, plant-aspect ratio (plant spread), and similarly associated geometrical and morphological traits for analyzing and discriminating genotypes. The results showed that a single trait, the number of leaves, can also be used for discriminating genotypes. This critical drought-adaptive trait was associated with plant size, architecture, and biomass. In this work, the number of leaves and other characteristics were estimated non-destructively from top view images of the rice plant for each genotype. The estimation of the number of leaves for each rice plant was conducted with the deep learning model, YOLO (You Only Look Once). The leaves were counted by detecting corresponding visible leaf tips in the rice plant. The detection accuracy was 86-92% for dense to moderate spread large plants, and 98% for sparse spread small plants. With this framework, the susceptible genotypes (MTU1010, PUSA-1121 and similar genotypes) and drought-resistant genotypes (Heera, Anjali, Dular and similar genotypes) were grouped in the core set with a respective group of drought-susceptible and drought-tolerant genotypes based on the number of leaves, and the leaves' emergence during the peak drought-stress period. Moreover, it was found that the number of leaves was significantly associated with other pertinent morphological, physiological and geometrical traits. Other geometrical traits were measured from the RGB images with the help of computer vision.

9.
Front Plant Sci ; 12: 575751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177972

RESUMO

Leaf counting in potted plants is an important building block for estimating their health status and growth rate and has obtained increasing attention from the visual phenotyping community in recent years. Two novel deep learning approaches for visual leaf counting tasks are proposed, evaluated, and compared in this study. The first method performs counting via direct regression but using multiple image representation resolutions to attend leaves of multiple scales. The leaf count from multiple resolutions is fused using a novel technique to get the final count. The second method is detection with a regression model that counts the leaves after locating leaf center points and aggregating them. The algorithms are evaluated on the Leaf Counting Challenge (LCC) dataset of the Computer Vision Problems in Plant Phenotyping (CVPPP) conference 2017, and a new larger dataset of banana leaves. Experimental results show that both methods outperform previous CVPPP LCC challenge winners, based on the challenge evaluation metrics, and place this study as the state of the art in leaf counting. The detection with regression method is found to be preferable for larger datasets when the center-dot annotation is available, and it also enables leaf center localization with a 0.94 average precision. When such annotations are not available, the multiple scale regression model is a good option.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA