Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(3): 815-825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995914

RESUMO

BACKGROUND: Environmental enteric dysfunction (EED) causes malnutrition in children in low-resource settings. Stable-isotope breath tests have been proposed as noninvasive tests of altered nutrient metabolism and absorption in EED, but uncertainty over interpreting the breath curves has limited their use. The activity of sucrose-isomaltase, the glucosidase enzyme responsible for sucrose hydrolysis, may be reduced in EED. We previously developed a mechanistic model describing the dynamics of the 13C-sucrose breath test (13C-SBT) as a function of underlying metabolic processes. OBJECTIVES: This study aimed to determine which breath test curve dynamics are associated with sucrose hydrolysis and with the transport and metabolism of the fructose and glucose moieties and to propose and evaluate a model-based diagnostic for the loss of activity of sucrase-isomaltase. METHODS: We applied the mechanistic model to 2 sets of exploratory 13C-SBT experiments in healthy adult participants. First, 19 participants received differently labeled sucrose tracers (U-13C fructose, U-13C glucose, and U-13C sucrose) in a crossover study. Second, 16 participants received a sucrose tracer accompanied by 0, 100, and 750 mg of Reducose, a sucrase-isomaltase inhibitor. We evaluated a model-based diagnostic distinguishing between inhibitor concentrations using receiver operator curves, comparing with conventional statistics. RESULTS: Sucrose hydrolysis and the transport and metabolism of the fructose and glucose moieties were reflected in the same mechanistic process. The model distinguishes these processes from the fraction of tracer exhaled and an exponential metabolic process. The model-based diagnostic performed as well as the conventional summary statistics in distinguishing between no and low inhibition [area under the curve (AUC): 0.77 vs. 0.66-0.79] and for low vs. high inhibition (AUC 0.92 vs. 0.91-0.99). CONCLUSIONS: Current summary approaches to interpreting 13C breath test curves may be limited to identifying only gross gut dysfunction. A mechanistic model-based approach improved interpretation of breath test curves characterizing sucrose metabolism.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Sacarose , Criança , Adulto , Humanos , Complexo Sacarase-Isomaltase , Estudos Cross-Over , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Glucose/metabolismo , Oligo-1,6-Glucosidase , Testes Respiratórios , Frutose
2.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38631326

RESUMO

In the current investigation, zinc oxide (ZnO) nanoparticles and Fe-doped ZnO nanoparticles were sustainably synthesized utilizing an extract derived from theRumex dentatusplant through a green synthesis approach. The Scanning electron microscope (SEM), X-ray diffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Ultra-violet visible spectroscopy (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) techniques were used to examine the compositional, morphological, optical, and thermal properties of both samples. The doping of iron into ZnO NPs has significantly influenced their properties. The analysis firmly established that both ZnO NPs and Fe-doped ZnO NPs have hexagonal wurtzite structures and spherical shapes by XRD and SEM. The EDX analysis suggests that iron atoms have been successfully integrated into the ZnO lattice. The change in color observed during the reaction indicated the formation of nanoparticles. The UV-vis peaks at 364 nm and 314 nm confirmed the presence of ZnO NPs and Fe-doped ZnO NPs, respectively. The band gap of ZnO NPs by Fe dopant displayed a narrowing effect. This indicates that adding iron ions to ZnO NPs offers a control band gap. The thermal study TGA revealed that Fe-doped ZnO NPs remain stable when heated up to 600 °C. The antibacterial efficacy of ZnO NPs and Fe-doped ZnO NPs was evaluated against several bacterial strains. The evaluation is based on the zone of inhibition (ZOI). Both samples exhibited excellent antibacterial properties as compared to conventional pharmaceutical agents. These results suggest that synthesizing nanoparticles through plant-based methods is a promising approach to creating versatile and environmentally friendly biomedical products.


Assuntos
Antibacterianos , Ferro , Nanopartículas Metálicas , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ferro/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Difração de Raios X , Staphylococcus aureus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Mol Biol Rep ; 51(1): 994, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292292

RESUMO

Prostate cancer development and progression are driven by androgens, and changes in androgen metabolic pathways can lead to prostate cancer progression or remission. AKR1C2 is a member of the aldo-keto reductase superfamily and plays an important role in the metabolism of steroids and prostaglandins. Alterations in the expression and activity of AKR1C2 affect the homeostasis of active androgens, which in turn affects the progression of prostate cancer. AKR1C2 reduces the highly active dihydrotestosterone to the less active 3α-diol in the prostate, resulting in lower androgen levels. Whereas the expression of AKR1C2 is significantly reduced in prostate cancer tissues relative to normal prostate tissues, this results in a weakening of the dihydrotestosterone metabolic inactivation pathway, leading to the retention of dihydrotestosterone in the prostate cancer cells, which promotes the progress of prostate cancer. Given the critical role of AKR1C2 in prostate cancer cells, targeting AKR1C2 for the treatment of prostate cancer may be an effective strategy. It has been demonstrated that curcumin and neem leaf extract effectively inhibit prostate cancer in vitro and in vivo by modulating AKR1C2.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/genética , Animais , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Di-Hidrotestosterona/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Androgênios/metabolismo
4.
Environ Res ; 246: 118061, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157967

RESUMO

This research was performed to investigate the bactericidal and fungicidal competence of extracts (methanol and petroleum ether extract) of Polyalthia longifolia leaf. Moreover, the major active compounds present in the effective crude extract (either methanol or petroleum ether extract) was determined through initially with UV-Vis spectra, FTIR, and GC-MS analyses. The methanol extract alone showed remarkable bactericidal and fungicidal activity against the bacterial (S. pyogenes > E. coli > S. aureus > S. pneumoniae > C. difficile > P. aeruginosa) and fungal (A. clavatus > C. albicans > A. niger > A. fumigatus > C. tropicalis > C. auris) pathogens at increased concentration (12.5 mg mL-1) than petroleum ether extract. The MIC and MBC values of methanol extract were found as 10-20 mg mL-1 and 30-40 mg mL-1 respectively. The MFC value of methanol extract was found as 10-20 mg mL-1. These MIC, MBC, and MFC values of methanol extract were considerably greater than petroleum ether extract. The FTIR and GC-MS characterization studies revealed that the presence of more acre functional groups belonging to bioactive compounds such as Z)-7-Hexadecenal, Aromandendrene, α-Curcumene, Caryophyllene, Methyl 14-methyl Pentadecanoat, Methyl trans-13-Octadecenoate, 9-Octadecenoic acid (Z)-, and 2-hydroxy-1- (hydroxymethyl)ethyl. As a result of these findings, it is possible that P. longifolia leaf methanol extract contains medicinally important bioactive substances with bactericidal and fungicidal properties.


Assuntos
Alcanos , Anti-Infecciosos , Clostridioides difficile , Fungicidas Industriais , Polyalthia , Extratos Vegetais/farmacologia , Metanol , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Solventes , Candida albicans
5.
Biochemistry (Mosc) ; 89(1): 97-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467548

RESUMO

The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.


Assuntos
Olea , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Olea/metabolismo , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Cisplatino/farmacologia , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Caderinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular
6.
J Appl Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837228

RESUMO

Mulberry (genus Morus) leaves have long been used as a human food, especially in Asia, and animal feed. More recently, mulberry leaf extracts have been introduced as a convenient way to consume mulberry for non-nutritional functional effects. Reducose® 5% is an Morus alba leaf extract that has been highly purified and standardized to a content of 5 ± 0.5% 1-deoxynojirimycin, a naturally present polyhydroxylated piperidine alkaloid analog of D-glucose. This extract has previously been evaluated in acute and subacute (28-day) oral toxicity studies in which no adverse effects of the test item were observed in mice or rats, respectively. Due to continued and growing interest in the extract in multinational markets, we have now further investigated potential toxic effects in subchronic (90-day) oral toxicity study in male and female Han:WIST rats. The test item was administered at doses of 850, 1700, and 2550 mg/kg bw/day, and did not cause adverse effects in clinical signs, body weight development, clinical pathology, gross pathology, or histopathology in comparison to the vehicle-control group. The no-observed-adverse-effect-level was determined to be 2550 mg/kg bw/day. These results add to the existing body of both preclinical and clinical work relevant to the safety of the extract and of interest to regulators in various global markets.

7.
Drug Chem Toxicol ; : 1-14, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835191

RESUMO

The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-ßeta1 (TGF-ß1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-ß1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.

8.
Drug Chem Toxicol ; : 1-15, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508716

RESUMO

This study aimed to investigate the effects of combined exposure to noise (85 dB(A)) and inhaled Toluene (300 ± 10 ppm) on rat lung health. It also aimed to assess the potential therapeutic effects of Olea europaea L. leaves extract (OLE) (40 mg/kg/day) using biochemical, histopathological, and immunohistochemical (IHC) analyses, as well as determination of pro-inflammatory cytokines (TNF-α and IL-1ß), and in silico Docking studies. The experiment involved forty-two male Wistar rats divided into seven groups, each exposed to a 6-week/6-hour/day regimen of noise and Toluene. The groups included a control group, rats co-exposed to noise and Toluene, and rats co-exposed to noise and Toluene treated with OLE for different durations. The results indicated that noise and Toluene exposure led to structural damage in lung tissue, oxidative harm, and increased levels of pro-inflammatory cytokines (TNF-α and IL-1ß). However, the administration of OLE extract demonstrated positive effects in mitigating these adverse outcomes. OLE treatment reduced lipid peroxidation and enhanced the activities of catalase and superoxide dismutase, indicating its anti-oxidant properties. Furthermore, OLE significantly decreased the levels of pro-inflammatory cytokines compared to the groups exposed to noise and Toluene without OLE treatment. Moreover, the in silico investigation substantiated a robust affinity between COX-2 and OLE components, affirming the anti-inflammatory activity. Overall, our findings suggest that OLE possesses anti-inflammatory and anti-oxidative properties that mitigate the adverse effects of concurrent exposure to noise and Toluene.

9.
Chem Biodivers ; 21(8): e202400717, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837886

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 µg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.


Assuntos
Enzima de Conversão de Angiotensina 2 , Furina , Olea , Extratos Vegetais , Folhas de Planta , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Serina Endopeptidases/metabolismo , Furina/metabolismo , Furina/antagonistas & inibidores , Humanos , SARS-CoV-2/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Olea/química , Regulação para Baixo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , COVID-19/virologia
10.
Environ Toxicol ; 39(5): 3198-3210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351887

RESUMO

In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.


Assuntos
Nelumbo , Neuroblastoma , Camundongos , Humanos , Animais , Escopolamina/farmacologia , Escopolamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogênese , Aprendizagem em Labirinto , Extratos Vegetais/química , Cognição
11.
Int J Neurosci ; : 1-15, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38153337

RESUMO

BACKGROUND: Neuroprotective role of olive and its natural products can introduce them as alternative candidates for the management of neurodegenerative diseases including stroke. The present study was designed to evaluate whether pretreatment of olive oil and leaf extract can attenuate the most important destructive processes in cerebral ischemia called excitotoxicity. MATERIAL AND METHODS: The male rats were categorized into control, virgin olive oil (OVV), MCAO, MCAO + OVV (with doses of 0.25, 0.50 and 0.75 ml/kg as treatment groups), olive leaf extract, MCAO + olive leaf extract (with doses 50, 75 and 100 mg/kg as treatment groups) groups. Rats of treatment groups received gastric gavage with olive oil or leaf extract for 30 consecutive days. After pretreatment, the intraluminal filament technique was used to block middle cerebral artery (MCA) transiently. Neurological deficits, infarct volume and expression of Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) proteins were measured. RESULTS: The results revealed that olive oil at doses of 0.50 and 0.75 ml/kg reduced the infarction and neurological score and upregulated NCXs expression in rat brain. In addition, olive leaf extract at doses of 75 and 100 mg/kg attenuated the infarction and neurological score and enhanced NCXs expression in rat brain. CONCLUSION: These findings support the view that olive oil and leaf extract play the neuroprotective role in cerebral ischemia due to the upregulation of NCXs protein expression.

12.
Int J Toxicol ; 43(1_suppl): 64S-81S, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37930133

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 10 Ginkgo biloba-derived ingredients, which are most frequently reported to function in cosmetics as skin conditioning agents or antioxidants. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. The Panel was concerned about the presence of ginkgolic acid in cosmetics. Industry should use good manufacturing practices to limit impurities. The Panel concluded that 5 Ginkgo biloba leaf-derived ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be non-sensitizing; data are insufficient to determine the safety of the remaining 5 ingredients under the intended conditions of use in cosmetic formulations.


Assuntos
Cosméticos , Ginkgo biloba , Ginkgo biloba/toxicidade , Qualidade de Produtos para o Consumidor , Extratos Vegetais/toxicidade , Cosméticos/toxicidade , Antioxidantes
13.
Int J Toxicol ; : 10915818241231249, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342963

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 28 soy-derived ingredients as used in cosmetic products. These ingredients are reported to primarily function as antioxidants, skin protectants, skin-conditioning agents, and hair-conditioning agents. The Panel considered the available data relating to the safety of these ingredients in cosmetic formulations, and concluded that 24 of the 28 soy-derived ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment. The Panel also concluded that the available data are insufficient to make a determination that Glycine Max (Soybean) Callus Culture, Glycine Max (Soybean) Callus Culture Extract, Glycine Max (Soybean) Callus Extract, and Glycine Max (Soybean) Phytoplacenta Conditioned Media are safe under the intended conditions of use in cosmetic formulations.

14.
Int J Phytoremediation ; 26(5): 594-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723603

RESUMO

The present study evaluates the synthesis of zinc oxide nanoparticles (ZnO NPs) using water extract of Sal leaves (Shorea Robusta) for efficient removal of Eriochrome black-T from the water and wastewater. The material is characterized using FESEM, FTIR, EDX, pHzpc, XRD, BET, and TGA analysis. XRD confirmed the synthesis of ZnO with an average crystallite size of 35.24 nm a surface area of 95.939 m2/g and a pore volume of 0.280 cm3/g. The pHzpc of the material is 7.45. The study evaluates the effects of contact time (0-100 min), pH (3-10), concentration (10-50 mg/L), and temperature (298-328K). The Langmuir isotherm model (R2 = 0.993) and pseudo-second-order kinetic model (R2 = 0.998) were found to be the best-fit models. The maximum uptake capacity is 265.554 mg/g. The interaction is spontaneous (ΔG° -12.889 to-14.898 kJ/mol), endothermic ΔH° (4.290-14.216 kJ/mol) with an increase in spontaneity at the solid-liquid junction. The dye-loaded ZnO NPs were successfully regenerated in dilute NaOH solution and 1:1 methanol water, achieving regeneration efficiencies of 78% and 60%, respectively. The reusability of the ZnO NPs was ascertained for up to three consecutive cycles.


A promising method for synthesizing zinc oxide nanoparticles using water extract from burnt Shorea robusta leaves as a precipitating and capping agent has been demonstrated with a high yield. The method is economical and convenient without the use of any chemical precipitating agents. The prepared material efficiently removes Eriochrome black T dye, commonly used in various industries for dyeing silk and nylon, from the solution.We report the first-ever synthesis of ZnO NP using the water extract of burnt leaves, and its application is tested for dye removal. A high surface area of 95.939 m2/g was determined, which is also higher in comparison to many works published. The maximum adsorption capacity recorded for EBT removal is 265.55 mg/g, which is relatively higher than other commercially synthesized zinc oxide.


Assuntos
Compostos Azo , Dipterocarpaceae , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Água/análise , Biodegradação Ambiental , Nanopartículas/química , Cinética , Extratos Vegetais , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
15.
Phytochem Anal ; 35(6): 1428-1442, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38725319

RESUMO

INTRODUCTION: Previously reported preparation methods of Ginkgo biloba leaf extract (EGBL) have mainly focused on the enrichment of flavonoid glycosides (FG) and terpene trilactones (TT), which led to the underutilization of G. biloba leaves (GBL). OBJECTIVES: To make full use of GBL, in this study, a comprehensive optimization strategy for preparing EGBL by macroporous resin column chromatography was proposed and applied to enrich FG, TT, and shikimic acid (SA) from GBL. METHODOLOGY: Initially, the static adsorption and desorption were executed to select suitable resin. Then, the influences of solution pH were investigated by the static and dynamic adsorption. Subsequently, eight process parameters were systematically investigated via a definitive screening design (DSD). After verification experiments, scale-up enrichment was carried out, investigating the feasibility of the developed strategy for application on an industrial scale. RESULTS: It was found that XDA1 was the most appropriate adsorbent for the preparation of EGBL at solution pH 2.0. Furthermore, based on the constraints of the desired quality attributes, the optimized ranges of operating parameters were successfully acquired, and the verification experiments demonstrated the accuracy and reliability of using DSD to investigate the chromatography process for the preparation of EGBL. Finally, magnified experiments were successfully performed, obtaining the EGBL containing 26.54% FG, 8.96% TT, and 10.70% SA, which reached the SA level of EGB761, an international standard EGBL. CONCLUSION: The present study not only provided an efficient and convenient approach for the preparation of EGBL enriched in SA but also accelerated efforts to high-value utilization of GBL.


Assuntos
Ginkgo biloba , Extratos Vegetais , Folhas de Planta , Ácido Chiquímico , Ginkgo biloba/química , Folhas de Planta/química , Extratos Vegetais/química , Ácido Chiquímico/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Flavonoides/análise , Concentração de Íons de Hidrogênio , Extrato de Ginkgo
16.
Drug Dev Ind Pharm ; : 1-13, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530403

RESUMO

Objective: This research aimed to investigate the application of the coaxial electrospun method for the production of natural extracts (papaya leaf extract) fibre films. This was achieved through utilising different polymers and with a focus on the conductivity and the viscosity of polymer solutions as critical parameters to generate successful fibres.Significance: Electrospinning is a promising trending manufacturing method for incorporating thermolabile herbal extracts using coaxial electrospun features. However, the complexity of the electrospinning process and the feasibility of the product required precise scrutiny.Methods: The electrospinning solution parameters (conductivity and viscosity) were evaluated by employing various ratios of Eudragit L100 (EL100) and Eudragit L100-55 (EL100-55) pre-spinning polymeric blend solutions. The electrospinning process and ambient parameters were optimised. Following that, the in-silico physicochemical properties of phytochemical marker, rutin, were illustrated using SwissADME web tool. Both freeze-dried Carica papaya leaf extract and its produced films were characterised using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarised light microscopy, and X-ray Powder Diffraction (XRPD).Results: The optimal values of conductivity (≈40-44 × 10-4 S/m) and viscosity (≈32-42 × 10-3 Pa·s) were determined for producing evenly distributed and small fibre diameters in SEM images. These parameters significance was highlighted in acquiring and maintaining adequate tangential stress for fibre elongation, which would consequently affect the morphology and diameter of the fibres formed.Conclusion: In conclusion, the solution, process, and ambient parameters are significant in developing natural extracts into films via electrospinning technology, and this includes the promising Carica papaya leaf extract films produced by coaxial electrospinning.

17.
J Asian Nat Prod Res ; 26(10): 1147-1159, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38945168

RESUMO

Bamboo leaf extract (BLE) is a pale brown powder extracted from bamboo leaves, and it is listed in the Chinese Standard GB-2760 as a legal and safe food additive. The present study aims to identify and characterize the major flavonoids in BLE. The identification of major flavonoids was carried out using ultra performance liquid chromatography combined with electrospray ionization quadruple time-of-flight tandem mass spectrometry (HPLC/ESI-QTOF-MS/MS). A total of 31 flavonoid compounds were identified and tentatively characterized base on reference standards and MS dissociation mechanisms. HPLC/ESI-QTOF-MS can serve as an important analytical platform to identification structure of bamboo leaf flavonoids (BLF).


Assuntos
Flavonoides , Folhas de Planta , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Flavonoides/química , Flavonoides/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Estrutura Molecular , Sasa/química , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/química , Bambusa/química
18.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125678

RESUMO

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Assuntos
Antioxidantes , Metabolômica , Moringa oleifera , Fibras Musculares Esqueléticas , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Moringa oleifera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metabolômica/métodos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
19.
Molecules ; 29(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203056

RESUMO

The Chinese yam (Dioscorea polystachya, DP) is promising for the food and pharmaceutical industries due to its nutritional value and pharmaceutical potential. Its proper cultivation is therefore of interest. An insufficient supply of minerals necessary for plant growth can be manifested by discoloration of the leaves. In our earlier study, magnesium deficiency was excluded as a cause. As a follow-up, this work focused on manganese and molybdenum. To quantify both minerals in leaf extracts of DP, analytical methods based on atomic absorption spectrometry (AAS) using the graphite furnace sub-technique were devised. The development revealed that the quantification of manganese works best without using any of the investigated modifiers. The optimized pyrolysis and atomization temperatures were 1300 °C and 1800 °C, respectively. For the analysis of molybdenum, calcium proved to be advantageous as a modifier. The optimum temperatures were 1900 °C and 2800 °C, respectively. Both methods showed satisfactory linearity for analysis. Thus, they were applied to quantify extracts from normal and discolored leaves of DP concerning the two minerals. It was found that discolored leaves had higher manganese levels and a lower molybdenum content. With these results, a potential explanation for the discoloration could be found.


Assuntos
Dioscorea , Manganês , Molibdênio , Folhas de Planta , Espectrofotometria Atômica , Molibdênio/análise , Molibdênio/química , Manganês/análise , Folhas de Planta/química , Espectrofotometria Atômica/métodos , Dioscorea/química , Extratos Vegetais/química , Extratos Vegetais/análise
20.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998936

RESUMO

Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.


Assuntos
Neoplasias do Colo , Extratos Vegetais , Folhas de Planta , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Metabolômica/métodos , Metaboloma/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Células RAW 264.7 , Camundongos , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA