Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 177-198, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125358

RESUMO

The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.


Assuntos
Doenças do Sistema Imunitário/genética , Imunidade/genética , RNA Longo não Codificante/imunologia , Animais , Regulação da Expressão Gênica , Humanos
2.
Trends Genet ; 38(11): 1170-1179, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35728988

RESUMO

Comparative transcriptome approaches assume that highly or dynamically expressed genes are important. This has led to the identification of many genes critical for cellular activity and organism development. However, while testes express the highest levels of long noncoding RNAs (lncRNAs), there is scarcely any evidence for lncRNAs with significant roles in fertility. This was explained by changes in chromatin structure during spermatogenesis that lead to 'promiscuous transcription' with no functional roles for the transcripts. Recent discoveries offer novel and surprising alternatives. Here, I review the current knowledge regarding the involvement of lncRNAs in fertility, why I find gametogenesis different from other developmental processes, offer models to explain why the experimental evidence did not meet theoretical predictions, and suggest possible approaches to test the models.


Assuntos
RNA Longo não Codificante , Cromatina/genética , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espermatogênese/genética , Transcriptoma
3.
EMBO Rep ; 24(2): e54313, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524339

RESUMO

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.


Assuntos
Prurido , RNA Longo não Codificante , Células Receptoras Sensoriais , Animais , Camundongos , Histamina , Prurido/genética , RNA Longo não Codificante/genética , Sensação
4.
Mol Cell ; 65(1): 25-38, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017589

RESUMO

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.


Assuntos
Núcleo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Biologia Computacional , Bases de Dados Genéticas , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Células HeLa , Humanos , Fosforilação , Poliadenilação , Interferência de RNA , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transfecção
5.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698299

RESUMO

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Assuntos
Transformação Celular Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Ductal Pancreático/fisiopatologia , Células Cultivadas , Reparo do DNA/genética , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos
6.
EMBO J ; 39(22): e105098, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32960481

RESUMO

Chromatin remodeling complexes have functions in transcriptional regulation and chromosome maintenance, but it is mostly unknown how the function of these normally ubiquitous complexes is specified in the cellular context. Here, we describe that the evolutionary conserved long non-coding RNA linc-MYH regulates the composition of the INO80 chromatin remodeler complex in muscle stem cells and prevents interaction with WDR5 and the transcription factor YY1. Linc-MYH acts as a selective molecular switch in trans that governs the pro-proliferative function of the ubiquitous INO80 complex but does not affect its role in maintaining genomic stability. The molecular switch is essential for restricting generation of quiescent MuSCs and proliferation of myoblasts in homeostasis and regeneration. Since linc-MYH is expressed in proliferating myoblasts but not in quiescent MuSCs, we reason that the extent of myoblast proliferation has decisive effects on the size of the quiescent MuSC pool.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Longo não Codificante/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proliferação de Células , Cromatina , DNA Glicosilases/genética , Proteínas de Ligação a DNA/genética , Epigenômica , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Mioblastos/citologia , RNA Longo não Codificante/genética , RNA não Traduzido , Regeneração/fisiologia , Transcriptoma , Fator de Transcrição YY1/genética
7.
EMBO Rep ; 23(5): e53937, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35312140

RESUMO

LincRNA-EPS is an important regulator in inflammation. However, the role of lincRNA-EPS in the host response against viral infection is unexplored. Here, we show that lincRNA-EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV-1. Overexpression of lincRNA-EPS facilitates viral infection, while deficiency of lincRNA-EPS protects the host against viral infection in vitro and in vivo. LincRNA-EPS-/- macrophages show elevated expression of antiviral interferon-stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN-ß, the key upstream inducer of these ISGs, is downregulated in lincRNA-EPS-/- macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA-EPS binds to PKR and antagonizes the viral RNA-PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN-I induction. LincRNA-EPS inhibits PKR-STAT1-ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA-EPS promoting the induction of PKR-STAT1-dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.


Assuntos
RNA Longo não Codificante , Antivirais , Imunidade Inata , Interferon beta/genética , Interferons , RNA Longo não Codificante/genética , RNA Viral/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338752

RESUMO

More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long noncoding RNA (lncRNA) expression signature in serum samples that correlated with rmTBI years after the incidences. Serum samples were obtained from Long-Term Impact of Military-Relevant Brain-Injury Consortium Chronic Effects of Neurotrauma Consortium (LIMBIC CENC) repository, from participants unexposed to TBI or who had rmTBI. Four lncRNAs were identified as consistently present in all samples, as detected via droplet digital PCR and packaged in exosomes enriched for CNS origin. The results, using qPCR, demonstrated that the lncRNA VLDLR-AS1 levels were significantly lower among individuals with rmTBI compared to those with no lifetime TBI. ROC analysis determined an AUC of 0.74 (95% CI: 0.6124 to 0.8741; p = 0.0012). The optimal cutoff for VLDLR-AS1 was ≤153.8 ng. A secondary analysis of clinical data from LIMBIC CENC was conducted to evaluate the psychological symptom burden, and the results show that lncRNAs VLDLR-AS1 and MALAT1 are correlated with symptoms of depression. In conclusion, lncRNA VLDLR-AS1 may serve as a blood biomarker for identifying chronic rmTBI and depression in patients.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , RNA Longo não Codificante , Veteranos , Humanos , Veteranos/psicologia , Concussão Encefálica/epidemiologia , Concussão Encefálica/genética , Concussão Encefálica/complicações , RNA Longo não Codificante/genética , Depressão/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/complicações
9.
J Mol Cell Cardiol ; 174: 63-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436251

RESUMO

Whether long noncoding RNAs participate in the formation of abdominal aortic aneurysms (AAAs) through the regulation of SMC phenotypic switching is unknown. lincRNA-p21 induced by reactive oxygen species (ROS) is likely functionally associated with SMC phenotypic switching. We thus investigated the role of lincRNA-p21 in SMC phenotypic switching-associated AAA formation and its underlying mechanisms. An analysis of human and mouse abdominal aortic samples revealed that the lincRNA-p21 levels were significantly higher in AAA tissue. Stimulation with hydrogen peroxide upregulated the expression of lincRNA-p21 in a dose-dependent manner and converted SMCs from a contractile phenotype to a synthetic, proteolytic, and proinflammatory phenotype in vitro. Moreover, lincRNA-p21 promoted fracture of elastic fibres, reconstruction of the vascular wall, and AAA formation in vivo by modulating SMC phenotypic switching in two mouse models of AAA induced by angiotensin II or porcine pancreatic elastase (PPE) perfusion. Using a bioinformatics prediction method and luciferase reporter gene assays, we further proved that lincRNA-p21 sponged miR-204-5p to release the transcriptional activity of Mekk3 and promoted the NF-κB pathway and thereby played a role in the SMC phenotypic switch and AAA formation. The ROS levels were positively correlated with the lincRNA-p21 levels in human and mouse AAA tissues. The knockdown of lincRNA-p21 in a PPE-induced mouse AAA model increased the miR-204-5p levels and reduced the expression of Mekk3, whereas lincRNA-p21 overexpression had the opposite effect. Collectively, the results indicated that ROS-induced lincRNA-p21 sponges miR-204-5p to accelerate synthetic and proinflammatory SMC phenotypes through the Mekk3/NF-κB pathway in AAA formation. Thus, lincRNA-p21 may have therapeutic potential for AAA formation.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Fenótipo , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
10.
Am J Respir Cell Mol Biol ; 68(5): 511-522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657060

RESUMO

Cigarette smoke (CS) exposure is a risk factor for many chronic diseases, including chronic obstructive pulmonary disease, but the mechanism by which smoke exposure can alter homeostasis and bring about chronic inflammation is poorly understood. Here, we showcase a novel role for smoke in regulating long noncoding RNAs, showing that it activates lincRNA-Cox2, which we previously characterized as functional in inflammatory regulation. Exposing lincRNA-Cox2 murine models to smoke in vivo confirmed lincRNA-Cox2 as a regulator of inflammatory gene expression in response to smoke both systemically and within the lung. We also report that lincRNA-Cox2 negatively regulates genes in smoked bone marrow-derived macrophages exposed to LPS stimulation. In addition to the effects on long noncoding RNAs, we also report dysregulated transcription and splicing of inflammatory protein-coding genes in the bone marrow niche after CS exposure in vivo. Collectively, this work provides insights into how innate immune signaling from gene expression to splicing is altered after in vivo exposure to CS and highlights an important new role for lincRNA-Cox2 in regulating immune genes after smoke exposure.


Assuntos
Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , Macrófagos/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
11.
Genes Cells ; 27(1): 14-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808017

RESUMO

LincRNA-p21 is a long intergenic non-coding RNA (LincRNA) gene reported to activate the transcription of the adjacent Cdkn1a (p21) gene in cis. The importance of the enhancer elements in the LincRNA-p21 gene region has also been reported; however, the involvement of the LincRNA-p21 transcripts in regulating Cdkn1a in vivo is still unclear. In this study, we used a LincRNA-p21-trapped mouse line (LincRNA-p21Gt ) in which ßgeo was inserted into intron 1, and all enhancer elements were retained. In LincRNA-p21Gt/Gt mice, the transcription of LincRNA-p21 was repressed due to the ßgeo sequence, and the expression of exon 1 of LincRNA-p21 was restored through its deletion or replacement by another sequence, and Cdkn1a expression was also upregulated. Furthermore, regardless of the full-length transcripts, the expression of Cdkn1a correlated with the transcription of the exon 1 of LincRNA-p21. This result indicates that the LincRNA-p21 transcripts are not functional, but the transcriptional activity around exon 1 is important for Cdkn1a expression.


Assuntos
RNA Longo não Codificante , Animais , Proliferação de Células , Éxons , Camundongos , RNA Longo não Codificante/genética
12.
J Virol ; 96(3): e0178221, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787459

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.


Assuntos
Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/genética , Polirribossomos/metabolismo , RNA não Traduzido/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Estudo de Associação Genômica Ampla , Infecções por Herpesviridae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1797-1805, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37766459

RESUMO

LincRNA-P21 is a tumor suppressor in esophageal squamous cell carcinoma (ESCC). Cell adhesion modules play vital roles in cell-cell and cell-extracellular matrix (ECM) interactions and malignant cancer progression. In this study, we investigate whether lincRNA-P21 exerts its functions by regulating the cell adhesion molecule cadherin 5 (CDH5) in ESCC. Moreover, the RNA binding protein (RBP) mediators of lincRNA-P21 and CDH5 are further examined. Cell viability, growth and migratory ability are assessed by calcein-AM/PI double staining, CCK-8, EdU, Transwell, and wound healing assays. The expression of collagen I and fibronectin is examined by immunofluorescence (IF). LincRNA-P21 and CDH5 are quantified by RT-qPCR and western blot analysis. Potential lincRNA-P21 targets are identified by RNA sequencing. RBPs that can interact with lincRNA-P21 and CDH5 are identified by RNA immunoprecipitation (RIP) assay. LincRNA-P21 knockdown increases cell viability, growth, cell migration, and collagen I and fibronectin expression in ESCC cells. LincRNA-P21 depletion induces the dysregulation of 316 genes, including CDH5, in TE-1 cells. CDH5 is identified as a downstream molecule of lincRNA-P21 given its close correlation with cell adhesion, ECM reconstruction, and cancer progression. LincRNA-P21 exerts its functions by negatively regulating CDH5 expression. YTH domain containing 1 (YTHDC1) mediates the regulatory effect of lincRNA-P21 on CDH5. LincRNA-P21 knockdown elevates cell viability and growth, promotes cell migration, and induces ECM reorganization by upregulating CDH5 via RBP YTHDC1 in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Colágeno/genética , Colágeno/metabolismo , Proliferação de Células , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
14.
Toxicol Mech Methods ; 33(7): 541-551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36992569

RESUMO

The repertoire of regulatory noncoding RNAs (ncRNAs) has been enriched by the inclusion of long noncoding RNA (lncRNA) that are longer than 200 nt. Some of the currently known lncRNAs, were reported in the 1990s before the term lncRNA was introduced. These lncRNAs have diverse regulatory functions including regulation of transcription via interactions with proteins and RNAs, chromatin remodeling, translation, posttranslational protein modification, protein trafficking and cell signaling. Predictably, the dysregulation of lncRNA expression due to exposure to toxicants may precipitate adverse health consequences. Dysregulation of lncRNAs has also been implicated in various adverse human health outcomes. There is an increasing agreement that lncRNA expression profiling data needs to be closely examined to determine whether their altered expression can be used as biomarkers of toxicity as well as adverse human health outcomes. This review summarizes the biogenesis, regulation, function of lncRNA and their emerging significance in toxicology and disease conditions. Because our understanding of the lncRNA-toxicity relationship is still evolving, this review discusses this developing field using some examples.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Montagem e Desmontagem da Cromatina
15.
J Clin Biochem Nutr ; 72(3): 234-241, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251964

RESUMO

This study mainly explored the role and mechanism of lincRNA-Cox2 in inflammatory injury of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide to establish an in vitro inflammatory injury model. Real-time polymerase chain reaction was used to detect lincRNA-Cox2 expression in LPS-stimulated BEAS-2B. Cell viability and apoptosis of cells were assessed using CCK-8 and Annexin V-PI double staining. The contents of inflammatory factors were determined by enzyme-linked immunosorbent assay kits. The protein levels of nuclear factor erythrocyte 2-related factor 2 and haem oxygenase 1 protein levels were measured by Western blot. The results showed that lincRNA-Cox2 was upregulated in LPS-stimulated BEAS-2B cells. lincRNA-Cox2 knockdown inhibited apoptosis and the release of tumour necrosis factor alpha, interleukin 1beta (IL-1ß), IL-4, IL-5, and IL-13 in BEAS-2B cells. lincRNA-Cox2 overexpression had the opposite effect. lincRNA-Cox2 knockdown also inhibited LPS-induced oxidative damage in BEAS-2B cells. Further mechanistic studies showed that inhibition of lincRNA-Cox2 upregulated the levels of Nrf2 and HO-1, and si-Nrf2 reversed the effects of si-lincRNA-Cox2. In conclusion, lincRNA-Cox2 knockdown inhibited BEAS-2B apoptosis and the level of inflammatory factors by activating the Nrf2/HO-1 pathway.

16.
BMC Genomics ; 23(Suppl 4): 381, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590257

RESUMO

BACKGROUND: Previous studies on plant long noncoding RNAs (lncRNAs) lacked consistency and suffered from many factors like heterogeneous data sources and experimental protocols, different plant tissues, inconsistent bioinformatics pipelines, etc. For example, the sequencing of RNAs with poly(A) tails excluded a large portion of lncRNAs without poly(A), and use of regular RNA-sequencing technique did not distinguish transcripts' direction for lncRNAs. The current study was designed to systematically discover and analyze lncRNAs across eight evolutionarily representative plant species, using strand-specific (directional) and whole transcriptome sequencing (RiboMinus) technique. RESULTS: A total of 39,945 lncRNAs (25,350 lincRNAs and 14,595 lncNATs) were identified, which showed molecular features of lncRNAs that are consistent across divergent plant species but different from those of mRNA. Further, transposable elements (TEs) were found to play key roles in the origination of lncRNA, as significantly large number of lncRNAs were found to contain TEs in gene body and promoter region, and transcription of many lncRNAs was driven by TE promoters. The lncRNA sequences were divergent even in closely related species, and most plant lncRNAs were genus/species-specific, amid rapid turnover in evolution. Evaluated with PhastCons scores, plant lncRNAs showed similar conservation level to that of intergenic sequences, suggesting that most lincRNAs were young and with short evolutionary age. INDUCED BY PHOSPHATE STARVATION (IPS) was found so far to be the only plant lncRNA group with conserved motifs, which may play important roles in the adaptation of terrestrial life during migration from aquatic to terrestrial. Most highly and specially expressed lncRNAs formed co-expression network with coding genes, and their functions were believed to be closely related to their co-expression genes. CONCLUSION: The study revealed novel features and complexity of lncRNAs in plants through systematic analysis, providing important insights into the origination and evolution of plant lncRNAs.


Assuntos
RNA Longo não Codificante , Biologia Computacional/métodos , Elementos de DNA Transponíveis , RNA Longo não Codificante/genética , RNA Mensageiro , RNA de Plantas/genética , Análise de Sequência de RNA , Transcriptoma , Sequenciamento do Exoma
17.
RNA ; 26(9): 1234-1246, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457084

RESUMO

The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Humanos , Camundongos , MicroRNAs/genética , Primatas/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Peixe-Zebra
18.
Mol Cell Probes ; 66: 101868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183926

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are expressed aberrantly in several malignancies, including nasopharyngeal carcinoma (NPC), where linc-ROR expression was found to be elevated. Being a hallmark of malignant tumors, angiogenesis has prompted us to investigate the impact of linc-ROR on NPC angiogenesis. This study demonstrates that linc-ROR is substantially expressed in serum exosomes from NPC and can be taken up by HUVECs. Using qRT-PCR, the CCK8 test, the transwell migration assay, the wound healing assay, and the tube formation assay, we demonstrated that linc-ROR increases proliferation, migration, and angiogenesis in vitro. Similar to prior research, our results have shown that linc-ROR can stimulate tumor angiogenesis in the zebrafish model. Thus, the p-AKT/p-VEGFR2 pathway is the mechanism by which linc-ROR affects the aforementioned biological activities. By stimulating angiogenesis, linc-ROR appears to play a significant role in the course of NPC and could account for a therapeutic target.


Assuntos
Exossomos , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Nasofaríngeo/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neoplasias Nasofaríngeas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
19.
Yi Chuan ; 44(2): 168-177, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35210217

RESUMO

Long non-coding RNAs (lncRNAs), which belong to the non-protein-coding RNAs, are greater than 200 nt in length. Although they have been found to play crucial roles in the regulation of cell growth and development, cell metabolism and the development of diseases, they are rarely reported in decidualization. The objective of our study is to explore the expression of lincRNA AC027700.1 in the endometrium of early pregnant mice and its role in decidualization. The expression of AC027700.1 in uterine tissues at implantation sites and inter implantation sites on the 6th day of pregnancy were detected by qRT-PCR. The relative expression of AC027700.1 in an in vivo model of induced decidualization in pseudopregnant mice and in in vitro model of induced decidualization in primary stromal cells and nucleus/cytoplasmic fractions were detected by qRT-PCR. GO and KEGG analysis of downstream target genes were performed by GOseq and KOBAS, respectively. The results show that AC027700.1 expression is significantly increased in tissues at implantation sites on the 6th day of pregnancy and in decidualized endometrial tissues and stromal cells. Furthermore, AC027700.1 localizes in the nuclear fraction and the downstream targeted genes are mainly involved in autophagy, cell cycle and RNA transport pathways. This study revealed that lincRNA AC027700.1 may be involved in decidualization of endometrium in early pregnancy, but the specific role and regulatory mechanism remain to be further studied.


Assuntos
Decídua , RNA Longo não Codificante , Animais , Autofagia , Decídua/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Estromais/metabolismo
20.
BMC Genomics ; 22(1): 868, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856924

RESUMO

BACKGROUND: As a popular and valuable technique, grafting is widely used to protect against soil-borne diseases and nematodes in vegetable production. Growing evidences have revealed that long intergenic ncRNAs (lincRNAs) are strictly regulated and play essential roles in plants development and stress responses. Nevertheless, genome-wide identification and function deciphering of pepper lincRNAs, especially for their roles in improving grafting pepper resistance to Phytophthora capsici is largely unknown. RESULTS: In this study, RNA-seq data of grafting and control pepper plants with or without P. capsici inoculation were used to identify lincRNAs. In total, 2,388 reliable lincRNAs were identified. They were relatively longer and contained few exons than protein-coding genes. Similar to coding genes, lincRNAs had higher densities in euchromatin regions; and longer chromosome transcribed more lincRNAs. Expression pattern profiling suggested that lincRNAs commonly had lower expression than mRNAs. Totally, 607 differentially expressed lincRNAs (DE-lincRANs) were identified, of which 172 were found between P. capsici resistance grafting pepper sample GR and susceptible sample LDS. The neighboring genes of DE-lincRNAs and miRNAs competitively sponged by DE-lincRNAs were identified. Subsequently, the expression level of DE-lincRNAs was further confirmed by qRT-PCR and regulation patterns between DE-lincRNAs and neighboring mRNAs were also validated. Function annotation revealed that DE-lincRNAs increased the resistance of grafting prepper to P. capsici by modulating the expression of disease-defense related genes through cis-regulating and/or lincRNA-miRNA-mRNA interaction networks. CONCLUSIONS: This study identified pepper lincRNAs and suggested their potential roles in increasing the resistance level of grafting pepper to P. capsici.


Assuntos
Capsicum , Phytophthora , Piper nigrum , RNA Longo não Codificante , Capsicum/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA