Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372965

RESUMO

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Assuntos
Cardiomiopatias , Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Lipidômica , Doenças Mitocondriais , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Doenças Mitocondriais/diagnóstico , Carnitina , Cisteamina , Lipídeos
2.
J Nutr ; 154(4): 1321-1332, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582699

RESUMO

BACKGROUND: Obesity is a progressive metabolic disease that begins with lipid metabolism disorders. Aromatic amino acids (AAAs), including tryptophan, phenylalanine, and tyrosine, have diverse biological activities as nutrients. However, the underlying mechanisms by which AAAs affect lipid metabolism are unclear. OBJECTIVES: This study was designed to investigate the possible roles and underlying molecular mechanisms of AAA in the pathogenesis of lipid metabolism disorders. METHODS: We added an AAA mixture to the high-fat diet (HFD) of mice. Glucose tolerance test was recorded. Protein expression of hepatic bile acid (BA) synthase and mRNA expression of BA metabolism-related genes were determined. Hepatic BA profiles and gut microbial were also determined in mice. RESULTS: The results showed that AAA significantly increased body weight and white adipose tissue, aggravated liver injury, impaired glucose tolerance and intestinal integrity, and significantly increased hepatic BA synthesis by inhibiting intestinal farnesoid X receptor (FXR). Moreover, AAA increased the content of total BA in the liver and altered the hepatic BA profile, with elevated levels of lithocholic acid, glycochenodeoxycholic acid, and glycoursodeoxycholic acid. AAA markedly increased the levels of proteins involved in BA synthesis (cholesterol 7α-hydroxylase and oxysterol 7α-hydroxylase) and inhibited the intestinal FXR. Gut microbial composition also changed, reducing the abundance of some beneficial bacteria, such as Parvibacter and Lactobacillus. CONCLUSIONS: Under HFD conditions, AAAs stimulate BA synthesis in both the classical and alternative pathways, leading to aggravation of liver injury and fat deposition. Excessive intake of AAA disrupts BA metabolism and contributes to the development of lipid metabolism disorders, suggesting that AAA may be a causative agent of lipid metabolism disorders.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Metabolismo dos Lipídeos , Camundongos , Animais , Aminoácidos Aromáticos , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL
3.
Pestic Biochem Physiol ; 198: 105739, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225084

RESUMO

Triphenyltin (TPT) is a widely used pesticide that has a negative impact on biological health and production efficiency. In addition, TPT poses a threat to human health through the food chain and environmental pollution. However, the exact mechanism of TPT toxicity remains unclear. In this study, we investigated the hepatotoxicity of TPT and its effects on lipid metabolism using male SD rats as an animal model. Our results from HE and serum biochemical analysis suggested that TPT could damage liver structure and function, resulting in disruption of lipid metabolism. We therefore proceeded to analyze the proteomic response of rat liver tissue after 28 days of treatment with 2 mg/kg/d TPT. Our study demonstrates that TPT has a variety of effects on liver protein expression in rats. Through bioinformatic analysis, we observed significant changes in proteins related to fatty acid oxidation and synthesis due to TPT exposure. Furthermore, western blot and RT-qPCR experiments confirmed that TPT can affect lipid metabolism through the PPAR pathway. These findings suggest that TPT exposure can lead to liver damage, lipid accumulation and metabolic disorders.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Metabolismo dos Lipídeos , Compostos Orgânicos de Estanho , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Proteômica , Fígado
4.
Microcirculation ; 30(7): e12827, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608689

RESUMO

Coronary microvascular dysfunction is a high-risk factor for many cardiovascular events. However, because of multiple risk factors and limited understanding about its underlying pathophysiological mechanisms, it was easily misdiagnosed. Therefore, its clinical diagnosis and treatment were greatly restricted. Coronary microcirculation refers to microvessels that play an important role in the physiological regulation of myocardial perfusion and regulating blood flow distribution, fulfilling myocardial metabolic needs and moderating peripheral vascular resistance. In coronary microvascular dysfunction, vascular endothelial celldamage is a critical link. The main feature of early coronary microvascular dysfunction is the impairment of endothelial cell proliferation, adhesion, migration, apoptosis, and secretion. Moreover, coronary microvascular dysfunction risk factors include hyperglycemia, lipid metabolism disorders, ischemia-reperfusion injury, aging, and hypertension, similar to coronary atherosclerosis. There are various mechanisms by which these risk factors harm endothelial function and cause microcirculatory disturbances. Therefore, we reviewed coronary microvascular dysfunction's risk factors and pathogenesis in this article.

5.
J Transl Med ; 21(1): 510, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507803

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/patologia , Estresse Oxidativo , Mitocôndrias/metabolismo , Antioxidantes/metabolismo
6.
Mol Cell Biochem ; 478(3): 665-678, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36029453

RESUMO

Atherosclerotic morbidity is significantly higher in the diabetic population. Hyperglycemia, a typical feature of diabetes, has been proven to accelerate foam cell formation. However, the molecular mechanisms behind this process remain unclear. In this study, LPS and IFN-γ were used to convert THP-1-derived macrophages into M1 macrophages, which were then activated with ox-LDL in either high glucose or normal condition. We identified lipids within macrophages by Oil red O staining and total cholesterol detection. The genes involved in lipid absorption, efflux, inflammation, and metabolism were analyzed using qRT-PCR. The mechanisms of high glucose-induced foam cell formation were further investigated through metabolomics and transcriptomics analysis. We discovered that high glucose speed up lipid accumulation in macrophages (both lipid droplets and total cholesterol increased), diminished lipid efflux (ABCG1 down-regulation), and aggravated inflammation (IL1B and TNF up-regulation). Following multi-omics analysis, it was determined that glucose altered the metabolic and transcriptional profiles of macrophages, identifying 392 differently expressed metabolites and 293 differentially expressed genes, respectively. Joint pathway analysis suggested that glucose predominantly disrupted the glycerolipid, glycerophospholipid, and arachidonic acid metabolic pathways in macrophages. High glucose in the glyceride metabolic pathway, for instance, suppressed the transcription of triglyceride hydrolase (LIPG and LPL), causing cells to deposit excess triglycerides into lipid droplets and encouraging foam cell formation. More importantly, high glucose triggered the accumulation of pro-atherosclerotic lipids (7-ketocholesterol, lysophosphatidylcholine, and glycerophosphatidylcholine). In conclusion, this work elucidated mechanisms of glucose-induced foam cell formation via a multi-omics approach.


Assuntos
Aterosclerose , Multiômica , Humanos , Colesterol/metabolismo , Macrófagos/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , Triglicerídeos/metabolismo , Inflamação/metabolismo , Glucose/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108038

RESUMO

Myonectin has shown beneficial effects on lipid regulation in murine models; therefore, it may have implications in the pathophysiology of metabolic syndrome (MS). We evaluated the relationship between serum myonectin and serum lipids, global and regional fat mass, intramuscular lipid content, and insulin resistance (IR) in adults with metabolic risk factors. This was a cross-sectional study in sedentary adults who were diagnosed with MS or without MS (NMS). Serum myonectin was quantified by enzyme-linked immunosorbent assay, lipid profile by conventional techniques, and free fatty acids (FFA) by gas chromatography. Body composition was assessed by dual-energy X-ray absorptiometry and intramuscular lipid content through proton nuclear magnetic resonance spectroscopy in the right vastus lateralis muscle. IR was estimated with the homeostatic model assessment (HOMA-IR). The MS (n = 61) and NMS (n = 29) groups were comparable in age (median (interquartile range): 51.0 (46.0-56.0) vs. 53.0 (45.5-57.5) years, p > 0.05) and sex (70.5% men vs. 72.4% women). MS subjects had lower serum levels of myonectin than NMS subjects (1.08 (0.87-1.35) vs. 1.09 (0.93-4.05) ng·mL-1, p < 0.05). Multiple linear regression models adjusted for age, sex, fat mass index and lean mass index showed that serum myonectin was negatively correlated with the android/gynoid fat mass ratio (R2 = 0.48, p < 0.01), but not with the lipid profile, FFA, intramuscular lipid content or HOMA-IR. In conclusion, serum myonectin is lower in subjects with MS. Myonectin negatively correlates with a component relevant to the pathophysiology of MS, such as the android/gynoid fat mass ratio, but not with other components such as FFA, intramuscular fat or IR.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Masculino , Humanos , Adulto , Feminino , Animais , Camundongos , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Estudos Transversais , Resistência à Insulina/fisiologia , Ácidos Graxos não Esterificados
8.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834674

RESUMO

Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee's index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and ß-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Lipodistrofia , Camundongos , Animais , Antioxidantes/farmacologia , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Anti-Inflamatórios/farmacologia , Lipodistrofia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
9.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687031

RESUMO

Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.


Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Doenças Metabólicas , MicroRNAs , Humanos , Doenças Metabólicas/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Desenvolvimento de Medicamentos , MicroRNAs/genética
10.
Bull Exp Biol Med ; 175(4): 454-458, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37770786

RESUMO

The choice of an optimal biological model of exogenous hypercholesterolemia is necessary for correct assessment of the cholesterol-lowering properties of bioactive substances and specialized food products and for validity of the experimental results. We studied the effects of cholesterol consumption in the composition of the standard semi-synthetic diet and high-fat high-carbohydrate diet for more than 3 months on lipid and cholesterol metabolism in male Wistar rats. Our findings suggest that cholesterol consumption in both diets led to a significant impairment of lipid and cholesterol metabolism, as well as an increase in insulin resistance in rats.

11.
Clin Endocrinol (Oxf) ; 97(6): 755-762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920656

RESUMO

CONTEXT: Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE: To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN: A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS: Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS: Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS: Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS: Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Criança , Humanos , Feminino , Adolescente , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Estudos Retrospectivos , Lamina Tipo A/genética , Gordura Subcutânea/metabolismo
12.
J Nutr ; 152(4): 939-949, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958377

RESUMO

BACKGROUND: Obesity-related metabolic diseases have recently evoked worldwide attention. Studies have demonstrated that Enteromorpha polysaccharide (EP) exerts lipid-lowering effects, but the underlying mechanism remains unclear. OBJECTIVES: We investigated whether EP regulates lipid metabolism disorders in mice with high-fat diet (HFD)-induced obesity via an AMP-activated protein kinase (AMPK)-dependent pathway. METHODS: Six-week-old male C57BL/6J mice (18 ± 2 g) were fed a normal diet (ND; 10% energy from fats) or an HFD (60% energy from fats) for 6 weeks to induce obesity and treated intragastrically with EP (200 mg/kg body weight) or distilled water (10 mL/kg body weight) for 8 weeks. Biochemical indicators, AMPK-dependent pathways, and lipid metabolism-related genes were evaluated to assess the effects of EP on HFD-induced lipid metabolism disorders. The essential role of AMPK in the EP-mediated regulation of lipid metabolism was confirmed using HFD-fed male Ampka2-knockout mice (aged 6 weeks; 17 ± 2 g) treated or not treated with the above-mentioned dose of EP. The data were analyzed by t-tests, 2-factor and 1-way ANOVAs. RESULTS: Compared to the ND, the HFD resulted in a greater body weight (24.3%), perirenal fat index (2.2-fold), and serum total cholesterol (24.66%) and LDL cholesterol (1.25-fold) concentrations (P < 0.05) and dysregulated the AMPK-dependent pathway and the expression of most lipid metabolism-related genes (P < 0.05). Compared to the HFD, EP treatment resulted in a lower perirenal fat index (31.22%) and LDL cholesterol concentration (23.98%) and partly reversed the dysregulation of the AMPK-dependent pathway and the altered expression of lipid metabolism-related genes (P < 0.05). Ampka2 knockout abolished the above-mentioned effects of EP in obese mice and the EP-mediated effects on the expression of lipid metabolism-related genes (P > 0.05). CONCLUSIONS: These findings suggest that EP can ameliorate lipid metabolism disorders in mice with HFD-induced obesity via an AMPK-dependent pathway.


Assuntos
Dieta Hiperlipídica , Transtornos do Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Polissacarídeos/farmacologia , Sulfatos/uso terapêutico
13.
J Nutr ; 152(4): 939-949, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967184

RESUMO

BACKGROUND: Obesity-related metabolic diseases have recently evoked worldwide attention. Studies have demonstrated that Enteromorpha polysaccharide (EP) exerts lipid-lowering effects, but the underlying mechanism remains unclear. OBJECTIVES: We investigated whether EP regulates lipid metabolism disorders in mice with high-fat diet (HFD)-induced obesity via an AMP-activated protein kinase (AMPK)-dependent pathway. METHODS: Six-week-old male C57BL/6J mice (18 ± 2 g) were fed a normal diet (ND; 10% energy from fats) or an HFD (60% energy from fats) for 6 weeks to induce obesity and treated intragastrically with EP (200 mg/kg body weight) or distilled water (10 mL/kg body weight) for 8 weeks. Biochemical indicators, AMPK-dependent pathways, and lipid metabolism-related genes were evaluated to assess the effects of EP on HFD-induced lipid metabolism disorders. The essential role of AMPK in the EP-mediated regulation of lipid metabolism was confirmed using HFD-fed male Ampka2-knockout mice (aged 6 weeks; 17 ± 2 g) treated or not treated with the above-mentioned dose of EP. The data were analyzed by t-tests, 2-factor and 1-way ANOVAs. RESULTS: Compared to the ND, the HFD resulted in a greater body weight (24.3%), perirenal fat index (2.2-fold), and serum total cholesterol (24.66%) and LDL cholesterol (1.25-fold) concentrations (P < 0.05) and dysregulated the AMPK-dependent pathway and the expression of most lipid metabolism-related genes (P < 0.05). Compared to the HFD, EP treatment resulted in a lower perirenal fat index (31.22%) and LDL cholesterol concentration (23.98%) and partly reversed the dysregulation of the AMPK-dependent pathway and the altered expression of lipid metabolism-related genes (P < 0.05). Ampka2 knockout abolished the above-mentioned effects of EP in obese mice and the EP-mediated effects on the expression of lipid metabolism-related genes (P > 0.05). CONCLUSIONS: These findings suggest that EP can ameliorate lipid metabolism disorders in mice with HFD-induced obesity via an AMPK-dependent pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtornos do Metabolismo dos Lipídeos , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , LDL-Colesterol , Sulfatos/uso terapêutico , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peso Corporal , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/etiologia
14.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36218373

RESUMO

High-fat diet induces lipid metabolism disorders that has become one of the grievous public health problems and imposes a serious economic and social burden worldwide. Safety probiotics isolated from nature are regarded as a novel supplementary strategy for preventing and improving diet-induced lipid metabolism disorders and related chronic diseases. The present review summarized the latest researches of probiotics in high fat diet induced lipid metabolism disorders to provide a critical perspective on the regulatory function of probiotics for future research. Furthermore, the screening criteria and general sources of probiotics with lipid-lowering ability also outlined to enlarge microbial species resource bank instantly, which promoted the development of functional foods with lipid-lowering strains from nature. After critically reviewing the lipid-lowering potential of probiotics both in vitro and in vivo and even in clinical data of humans, we provided a perspective that probiotics activated AMPK signaling pathway to regulate fat synthesis and decomposition, as well as affected positively the gut microbiota structure, intestinal barrier function and systemic inflammatory response, then these beneficial effects are amplified along Gut-liver axis, which regulated intestinal flora metabolites such as SCFAs and BAs by HMGCR/FXR/SHP signaling pathway to improve high fat diet induced lipid metabolism disorders effectively.

15.
Transfus Apher Sci ; 61(1): 103294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34686443

RESUMO

Lipemic plasma donations are not a strange phenomenon to blood bankers. According to quality standards for plasma fractionation, lipemic plasma donations must be discarded. Beyond quality control and inventory aspects, plasma lipemia is also an important risk factor for cardiovascular diseases, acute pancreatitis and is associated with overall mortality, however little attention is given to the management of these donors in the literature. A retrospective analysis of every whole blood donation that yielded lipemic plasma between January 1st 2018 and December 31st 2019 was made. The medical examination and donor history for the respective donation was reviewed and the available data was collected regarding hour of donation, gender, age, drugs and coexisting pathologies. Whether the donor was called back for a follow up evaluation regarding the lipemic plasma was also noted. Our blood center received 18274 whole blood donations of which 115 (0,63 %) were reported as having plasma lipemia, in the period of this study. Of these 115 donors, 103 (89,57 %) were male. The average age was 47,63 ± 10,65 years. A clear peak in lipemic plasma donations 4 hours after the classic lunch hours is visible. For 88,70 % of the donors, this was the first time their hypertriglyceridemia was identified. The nonfasting elevation of plasma triglycerides in these donors represents a true metabolic derangement. This is a golden opportunity for early intervention and follow up evaluation is indicated. More attention must be given during the medical evaluation to properly identify donors at risk of lipemic donations.


Assuntos
Hiperlipidemias/terapia , Hipertrigliceridemia/terapia , Plasma/química , Doadores de Sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
16.
Clin Exp Pharmacol Physiol ; 48(12): 1579-1588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34314523

RESUMO

In recent decades, there has been a progressive increase in the prevalence of obesity and chronic kidney disease. Renal lipotoxicity has been associated with obesity. Although lipids play fundamental physiological roles, the accumulation of lipids in kidney cells may cause dysfunction and/or renal fibrosis. Adipose tissue that exceeds their lipid storage capacity begins to release triglycerides into the bloodstream that can get stored in several organs, including the kidneys. The mechanisms underlying renal lipotoxicity involve intracellular lipid accumulation and organelle dysfunction, which trigger oxidative stress and inflammation that consequently result in insulin resistance and albuminuria. However, the specific pathways involved in renal lipotoxicity have not yet been fully understood. We aimed to summarize the current knowledge on the mechanisms by which lipotoxicity affects the renal morphology and function in experimental models of obesity. The accumulation of fatty acids in tubular cells has been described as the main mechanism of lipotoxicity; however, lipids and their metabolism also affect the function and the survival of podocytes. In this review, we presented indication of mitochondrial, lysosomal and endoplasmic reticulum alterations involved in kidney damage caused by obesity. The kidney is vulnerable to lipotoxicity, and studies of the mechanisms underlying renal injury caused by obesity can help identify therapeutic targets to control renal dysfunction.


Assuntos
Rim
17.
J Perinat Med ; 49(9): 1129-1134, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34213841

RESUMO

OBJECTIVES: The effects of lipid metabolism disorders (LMD) on pregnancy outcomes is not well known. The purpose of this study is to evaluate the impact of LMD on maternal and fetal outcomes. METHODS: Using the Healthcare Cost and Utilization Project - National Inpatient Sample from the United States, we carried out a retrospective cohort study of all births between 1999 and 2015 to determine the risks of complications in pregnant women known to have LMDs. All pregnant patients diagnosed with LMDs between 1999 and 2015 were identified using the International Classification of Disease-9 coding, which included all patients with pure hypercholesterolemia, pure hyperglyceridemia, mixed hyperlipidemia, hyperchylomicronemia, and other lipid metabolism disorders. Adjusted effects of LMDs on maternal and newborn outcomes were estimated using unconditional logistic regression analysis. RESULTS: A total of 13,792,544 births were included, 9,666 of which had an underlying diagnosis of LMDs for an overall prevalence of 7.0 per 10,000 births. Women with LMDs were more likely to have pregnancies complicated by diabetes, hypertension, and premature births, and to experience myocardial infarctions, venous thromboembolisms, postpartum hemorrhage, and maternal death. Their infants were at increased risk of congenital anomalies, fetal growth restriction, and fetal demise. CONCLUSIONS: Women with LMDs are at significantly higher risk of adverse maternal and newborn outcomes. Prenatal counselling should take into consideration these risks and antenatal care in specialized centres should be considered.


Assuntos
Anormalidades Congênitas , Retardo do Crescimento Fetal , Transtornos do Metabolismo dos Lipídeos , Complicações na Gravidez , Cuidado Pré-Natal , Risco Ajustado/métodos , Adulto , Estudos de Coortes , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/epidemiologia , Aconselhamento Diretivo/métodos , Feminino , Morte Fetal , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/epidemiologia , Humanos , Recém-Nascido , Classificação Internacional de Doenças , Transtornos do Metabolismo dos Lipídeos/classificação , Transtornos do Metabolismo dos Lipídeos/complicações , Transtornos do Metabolismo dos Lipídeos/diagnóstico , Transtornos do Metabolismo dos Lipídeos/epidemiologia , Mortalidade Materna , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/metabolismo , Resultado da Gravidez/epidemiologia , Cuidado Pré-Natal/métodos , Cuidado Pré-Natal/estatística & dados numéricos , Medição de Risco , Estados Unidos/epidemiologia
18.
Ecotoxicol Environ Saf ; 228: 113011, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34837870

RESUMO

6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative product of perfluorooctane sulfonate (PFOS), has been frequently detected in various environmental, wildlife, and human samples. A few studies revealed the hepatotoxicity of 6:2 Cl-PFESA in animals, but the underlying toxicity mechanisms remain largely unknown. In this study, we investigated the lipid metabolism disorders of 6:2 Cl-PFESA through miRNA-gene interaction mode in Huh-7 cells. Our results showed that 6:2 Cl-PFESA significantly promoted cellular lipid accumulation and increased the expression of Acyl-CoA oxidase 1 (ACOX1), with the lowest effective concentrations (LOECs) of 3 µM. In silico analysis showed that hsa-miR-532-3p is a potential miRNA molecule targeting ACOX1. Fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and ACOX1-mediated luciferase reporter gene assays showed that hsa-miR-532-3p could directly bind to ACOX1 and inhibit its transcription activity. Besides, 6:2 Cl-PFESA decreased the expression of hsa-miR-532-3p in the PPARα-independent manner. Overexpression of hsa-miR-532-3p promoted 6:2 Cl-PFESA-induced cellular lipid accumulation and decreased the ACOX1 production in Huh-7 cells. Taken together, at human exposure relevant concentrations, 6:2 Cl-PFESA might upregulate the expression levels of ACOX1 through downregulating hsa-miR-532-3p, and disturbed lipid homeostasis in Huh-7 cells, which revealed a novel epigenetic mechanism of 6:2 Cl-PFESA-induced hepatic lipid toxic effects.

19.
Zhonghua Yi Xue Za Zhi ; 101(2): 127-130, 2021 Jan 12.
Artigo em Zh | MEDLINE | ID: mdl-33455128

RESUMO

Objective: To analyze the prevalence and the related factors of dyslipidemia in 21-hydroxylase deficiency (21-OHD) patients. Methods: A total of 205 patients with 21-OHD were recruited in Peking Union Medical College Hospital from January 2016 to January 2018. The basic information, glucocorticoid replacement therapy, and laboratory examination results of patients were obtained from medical records. The genotypes of CYP21A2 were identified by Sanger sequencing and multiplex ligation dependent probe amplification. The prevalence of dyslipidemia among 21-OHD patients, basic information and related hormone levels of 21-OHD patients with different status of blood lipid were described. Logistic regression model was used to analyze the related factors of dyslipidemia in 21-OHD patients. Results: The age of subjects was 17.0 (8.3, 25.0) years old, including 51 males (24.9%). According to CYP21A2 genotypes, there were 16 cases in Null group, 26 cases in Group A, 105 cases in group B, 27 cases in group C, and 31 cases in group D. The incidence of dyslipidemia was 29.3% (60/205), among which 37.3% (19/51) in male and 26.6% (41/154) in female patients, respectively. The M (Q1, Q3) of total cortisol level (nmol/L) and body mass index (kg/m2) of male 21-OHD patients with dyslipidemia were 0.17 (0.06, 0.35) and 25.76 (17.01, 30.45), respectively, which were higher than those with ortholiposis [0.04 (0.02, 0.21) and 18.83 (16.53, 23.88)] (all P<0.05). The M (Q1, Q3) of progesterone level (nmol/L), body mass index (kg/m2) and age (years) of female 21-OHD patients with dyslipidemia were 74.40 (50.97, 98.52), 23.09 (21.78, 27.78) and 23.00 (16.50, 28.00), respectively, which were higher than those with ortholiposis [52.81 (33.41, 68.85), 21.55 (18.63, 25.71) and 18.00 (9.50, 25.00)] (all P<0.05). The risk of dyslipidemia increased by 5.0% [OR (95%CI): 1.05 (1.01, 1.09)] for every 1 nmol/L increase of progesterone. Conclusion: The incidence of dyslipidemia is high in 21-OHD patients, and progesterone level is positively correlated with dyslipidemia.


Assuntos
Hiperplasia Suprarrenal Congênita , Dislipidemias , Hiperplasia Suprarrenal Congênita/epidemiologia , Adulto , Dislipidemias/epidemiologia , Feminino , Humanos , Masculino , Prevalência , Esteroide 21-Hidroxilase
20.
Mol Cell Biochem ; 465(1-2): 125-139, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838625

RESUMO

Our previous studies have confirmed that proline/serine-rich coiled-coil 1 (PSRC1) overexpression can regulate blood lipid levels and inhibit atherosclerosis (AS) development. In the current study, the gene and transcript expression profiles in the livers of ApoE-/- mice overexpressing PSRC1 were investigated. HiSeq X Ten RNA sequencing (RNA-seq) analysis was used to examine the differentially expressed genes (DEGs) and differentially expressed transcripts in the livers of PSRC1-overexpressing ApoE-/- and control mice. Then, Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these DEGs and on long noncoding RNA (lncRNA) predicted target genes. A total of 1892 significant DEGs were identified: 1431 were upregulated (e.g., Cyp2a4, Obp2a, and Sertad4), and 461 were downregulated (e.g., Moxd1, Egr1, and Elovl3). In addition, 8184 significant differentially expressed transcripts were identified, 4908 of which were upregulated and 3276 of which were downregulated. Furthermore, 1106 significant differentially expressed lncRNAs were detected, 713 of which were upregulated and 393 of which were downregulated. Quantitative reverse transcription PCR (qRT-PCR) verified changes in 10 randomly selected DEGs. GO analyses showed that the DEGs and predicted lncRNA target genes were mostly enriched for actin binding and lipid metabolism. KEGG biological pathway analyses showed that the DEGs in the livers of PSRC1-overexpressing ApoE-/- mice were enriched in the mitogen-activated protein kinase (MAPK) pathway. These findings reveal that PSRC1 may affect liver actin polymerization and cholesterol metabolism-related genes or pathways. These mRNAs and lncRNAs may represent new biomarkers and targets for the diagnosis and therapy of lipid metabolism disturbance and AS.


Assuntos
Aterosclerose , Gorduras na Dieta/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfoproteínas/biossíntese , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Gorduras na Dieta/farmacologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout para ApoE , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA