Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Genet ; 13: 834935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105077

RESUMO

Objective: To develop an autophagy-related lncRNA-based risk signature and corresponding nomogram to predict overall survival (OS) for LUAD patients and investigate the possible meaning of screened factors. Methods: Differentially expressed lncRNAs and autophagy genes were screened between normal and LUAD tumor samples from the TCGA LUAD dataset. Univariate and multivariate Cox regression analyses were performed to construct the lncRNA-based risk signature and nomogram incorporating clinical information. Then, the accuracy and sensitivity were confirmed by the AUC of ROC curves in both training and validation cohorts. qPCR, immunoblot, shRNA, and ectopic expression were used to verify the positive regulation of NFYC-AS1 on BIRC6. CCK-8, immunofluorescence, and flow cytometry were used to confirm the influence of NFYC-AS1 on cell proliferation, autophagy, and apoptosis via BIRC6. Results: A 12-lncRNA risk signature and a nomogram combining related clinical information were constructed. Furthermore, the abnormal increase of NFYC-AS1 may promote LUAD progression through the autophagy-related gene BIRC6. Conclusion: 12-lncRNA signature may function as a predictive marker for LUAD patients, and NFYC-AS1 along with BIRC6 may function as carcinogenic factors in a combinatorial manner.

2.
Front Cell Dev Biol ; 10: 921364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035997

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the long non-coding RNA (LncRNA) family. LncRNA-MALAT1 is expressed in a variety of tissues and is involved in a variety of diseases and biological processes. Although LncRNA-MALAT1 is upregulated in a high-glucose microenvironment and may participate in odontogenic differentiation, the underlying mechanism is not yet well elucidated. Here, we show that MALAT1 was mainly expressed in the cytoplasm of dental pulp cells (DPCs) in situ hybridization. In addition, high levels of mineralization-related factors, namely, tumor growth factors ß 1 and 2 (TGFß-1 and TGFß-2), bone morphogenetic proteins 2 and 4 (BMP2 and BMP4), bone morphogenetic protein receptor 1 (BMPR1), SMAD family member 2 (SMAD2), runt-related transcription factor 2 (RUNX2), Msh homeobox 2 (MSX2), transcription factor SP7 (SP7), alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP), were expressed, and MALAT1 was significantly overexpressed in DPCs 7 and 14 days after mineralization induction in a high-glucose microenvironment, but only TGFß-1, BMP2, MSX2, SP7, ALP, and DSPP were significantly downregulated in DPCs after MALAT1 inhibition. MALAT1 may participate in the mineralization process of DPCs by regulating multiple factors (TGFß-1, BMP2, MSX2, SP7, ALP, and DSPP).

3.
Front Microbiol ; 13: 1093615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713213

RESUMO

Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA-disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA-disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA-disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA-disease associations.

4.
Front Genet ; 13: 945919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276965

RESUMO

Background: SNGH14 is a newly discovered long non-coding RNA (lncRNA) highly associated with tumorigenesis. However, whether the level of SNHG14 is related to the prognosis of patients with different cancer types is unclear. Methods: PubMed, Web of Science, Cochrane Library, and Embase were searched to identify eligible studies from inception to November 2021. The odds ratio (OR) and 95% confidence interval (CI) were utilized to analyze dichotomous variables, while the hazard ratio (HR) and 95% CI were used for survival outcomes. We also included trial sequential analysis (TSA) to assess whether the current evidence was sufficiently conclusive. Stata 15.0 and TSA 0.9 software were used for data analyses. Results: A total of 21 studies involving 1,080 patients, mainly from China, were included. Our results revealed that high SNHG14 expression was associated significantly with poor overall survival (OS) [HR = 1.39; 95% CI: (1.06-1.83); p = 0.017]. In addition, elevated SNHG14 expression was related to tumor size (> 3.5 cm) [OR = 1.60; 95% CI: (1.20-2.14); p = 0.001], TNM staging [OR = 0.54; 95% CI: (0.40-0.71); p < 0.001], lymph node metastasis [OR = 1.86; 95% CI: (1.35-2.55); p < 0.001], differentiation grade [OR = 1.95; 95% CI: (1.36-2.80); p < 0.001], and distant metastasis [OR = 2.44; 95% CI: (1.30-4.58); p = 0.005]. However, no significant difference was observed between age [OR = 0.98; 95% CI: (0.72-1.35); p = 0.915] and gender [OR = 0.98; 95% CI: (0.72-1.35); p = 0.915] from the enhanced expression of SNHG14. Conclusion: The current study revealed that overexpression of SNGH14 is associated with low OS rate and clinicopathological characteristics. SNGH14 can be a novel tumor marker that aids in tumor diagnosis, thereby improving patient prognosis.

5.
Data Brief ; 45: 108770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533287

RESUMO

This article presents data concerning STX18-AS1, a long noncoding RNA gene identified from a Genome-wide association study of Atrial Septal Defect (ASD). The data describes its expression patterns in human tissues and functions in regulating cardiomyocyte differentiation in vitro. STX18-AS1 is a lncRNA with a higher abundance in developing tissues, including hearts. Its transcription distribution within the embryonic hearts during key heart septation stages supports STX18-AS1's association with risk SNPs for ASD. The CRISPR stem cell pool in which STX18-AS1 was knocked down, showed reduced CM differentiation efficiency and lower expression of key cardiac transcriptional factors. This indicated its regulative role in supporting the lineage specification from cardiac mesoderm into cardiac progenitors and cardiomyocytes. These data can benefit the understanding of human embryonic heart developmental biology, and the time-course changes of cardiac transcriptional factors during in vitro cardiomyocyte differentiation from human embryonic stem cells.

6.
JACC Basic Transl Sci ; 7(9): 956-969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317129

RESUMO

Cardiovascular disease (CVD) remains the largest cause of mortality worldwide. The development of new effective therapeutics is a major unmet need. The current review focuses broadly on the concept of nucleic acid (NA)-based therapies, considering the use of various forms of NAs, including mRNAs, miRNAs, siRNA, and guide RNAs, the latter specifically for the purpose of CRISPR-Cas directed gene editing. We describe the current state-of-the-art of RNA target discovery and development, the status of RNA therapeutics in the context of CVD, and some of the challenges and hurdles to be overcome.

7.
JACC Basic Transl Sci ; 7(9): 880-895, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317130

RESUMO

The most devastating and catastrophic deterioration of myocardial ischemia-reperfusion injury (MIRI) is cardiomyocyte death. Here we aimed to evaluate the role of lncRNA-ZFAS1 in MIRI and delineate its mechanism of action. The level of lncRNA-ZFAS1 was elevated in MIRI hearts, and artificial knockdown of lncRNA-ZFAS1 in mice improved cardiac function. Notch1 is a potential target of lncRNA-ZFAS1, and lncRNA-ZFAS1 could bind to the promoter region of Notch1 and recruit DNMT3b to induce Notch1 methylation. Nicotinamide mononucleotide could promote the expression of Notch1 by competitively inhibiting the expression of DNMT3b and improving the apoptosis of cardiomyocytes and cardiac function.

8.
J Adv Res ; 37: 91-106, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499052

RESUMO

Introduction: Tumors are usually refractory to anti-cancer therapeutics under hypoxic conditions. However, the underlying molecular mechanism remains to be elucidated. Objectives: Our study intended to identify hypoxia inducible lncRNAs and their biological function in gastric cancer (GC). Methods: Differentially expressed lncRNAs were determined by microarray analysis between GC cells exposed to hypoxia (1% O2) and normoxia (21% O2) for 24 h. The expression level of CBSLR was manipulated in several GC cell lines to perform molecular and biological analyses both in vitro and in vivo. Results: We identified a hypoxia-induced lncRNA-CBSLR that protected GC cells from ferroptosis, leading to chem-resistance. Mechanically, CBSLR interacted with YTHDF2 to form a CBSLR/YTHDF2/CBS signaling axis that decreased the stability of CBS mRNA by enhancing the binding of YTHDF2 with the m6A-modified coding sequence (CDS) of CBS mRNA. Furthermore, under decreased CBS levels, the methylation of the ACSL4 protein was reduced, leading to protein polyubiquitination and degradation of ACSL4. This, in turn, decreased the pro-ferroptosis phosphatidylethanolamine (PE) (18:0/20:4) and PE (18:0/22:4) content and contributed to ferroptosis resistance. Notably, CBSLR is upregulated, whereas CBS is downregulated in GC tissues compared to matched normal tissues; and GC patients with high CBSLR/low CBS levels have a worse clinical outcome and a poorer response to chemotherapy. Conclusion: Our study reveals a novel mechanism in how HIF1α/CBSLR modulates ferroptosis/chemoresistance in GC, illuminating potential therapeutic targets for refractory hypoxic tumors.


Assuntos
Ferroptose , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Hipóxia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo
9.
JACC Basic Transl Sci ; 7(9): 899-914, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317131

RESUMO

Based on high-throughput transcriptomic sequencing, SNHG3 was among the most highly expressed long noncoding RNAs in calcific aortic valve disease. SNHG3 upregulation was verified in human and mouse calcified aortic valves. Moreover, in vivo and in vitro studies showed SNHG3 silencing markedly ameliorated aortic valve calcification. In-depth functional assays showed SNHG3 physically interacted with polycomb repressive complex 2 to suppress the H3K27 trimethylation BMP2 locus, which in turn activated BMP2 expression and signaling pathways. Taken together, SNHG3 promoted aortic valve calcification by upregulating BMP2, which might be a novel therapeutic target in human calcific aortic valve disease.

10.
Front Cell Dev Biol ; 9: 703583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004666

RESUMO

Glioblastoma is the most common brain cancer in adults. Nevertheless, the median survival time is 15 months, if treated with at least a near total resection and followed by radiotherapy in association with temozolomide. In glioblastoma (GBM), variations of non-coding ribonucleic acid (ncRNA) expression have been demonstrated in tumor processes, especially in the regulation of major signaling pathways. Moreover, many ncRNAs present in their sequences an Open Reading Frame (ORF) allowing their translations into proteins, so-called alternative proteins (AltProt) and constituting the "ghost proteome." This neglected world in GBM has been shown to be implicated in protein-protein interaction (PPI) with reference proteins (RefProt) reflecting involvement in signaling pathways linked to cellular mobility and transfer RNA regulation. More recently, clinical studies have revealed that AltProt is also involved in the patient's survival and bad prognosis. We thus propose to review the ncRNAs involved in GBM and highlight their function in the disease.

11.
Front Genet ; 11: 600097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329745

RESUMO

Background: Osteoporosis is a highly heritable skeletal muscle disease. However, the genetic mechanisms mediating the pathogenesis of osteoporosis remain unclear. Accordingly, in this study, we aimed to clarify the transcriptional regulation and heritability underlying the onset of osteoporosis. Methods: Transcriptome gene expression data were obtained from the Gene Expression Omnibus database. Microarray data from peripheral blood monocytes of 73 Caucasian women with high and low bone mineral density (BMD) were analyzed. Differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) were identified. Differences in BMD were then attributed to several gene modules using weighted gene co-expression network analysis (WGCNA). LncRNA/mRNA regulatory networks were constructed based on the WGCNA and subjected to functional enrichment analysis. Results: In total, 3,355 mRNAs and 999 lncRNAs were identified as differentially expressed genes between patients with high and low BMD. The WGCNA yielded three gene modules, including 26 lncRNAs and 55 mRNAs as hub genes in the blue module, 36 lncRNAs and 31 mRNAs as hub genes in the turquoise module, and 56 mRNAs and 30 lncRNAs as hub genes in the brown module. JUN and ACSL5 were subsequently identified in the modular gene network. After functional pathway enrichment, 40 lncRNAs and 16 mRNAs were found to be related to differences in BMD. All three modules were enriched in metabolic pathways. Finally, mRNA/lncRNA/pathway networks were constructed using the identified regulatory networks of lncRNAs/mRNAs and pathway enrichment relationships. Conclusion: The mRNAs and lncRNAs identified in this WGCNA could be novel clinical targets in the diagnosis and management of osteoporosis. Our findings may help elucidate the complex interactions between transcripts and non-coding RNAs and provide novel perspectives on the regulatory mechanisms of osteoporosis.

12.
JACC Basic Transl Sci ; 5(11): 1149-1162, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294743

RESUMO

Pulmonary arterial hypertension (PAH) is a rare, chronic disease of the pulmonary vasculature that is associated with poor outcomes. Its pathogenesis is multifactorial and includes micro-RNA (miRNA) deregulation. The understanding of the role of miRNAs in PAH is expanding quickly, and it is increasingly difficult to identify which miRNAs have the highest translational potential. This review summarizes the current knowledge of miRNA expression in PAH, discusses the challenges in miRNA analysis and interpretation, and highlights 4 promising miRNAs in this field (miR-29, miR-124, miR-140, and miR-204).

13.
Front Genet ; 15: 1437522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948359
15.
Cell Mol Gastroenterol Hepatol ; 3(3): 348-358, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462377

RESUMO

Gastric cancer (GC) remains the third most common cause of cancer death worldwide, with limited therapeutic strategies available. With the advent of next-generation sequencing and new preclinical model technologies, our understanding of its pathogenesis and molecular alterations continues to be revolutionized. Recently, the genomic landscape of GC has been delineated. Molecular characterization and novel therapeutic targets of each molecular subtype have been identified. At the same time, patient-derived tumor xenografts and organoids now comprise effective tools for genetic evolution studies, biomarker identification, drug screening, and preclinical evaluation of personalized medicine strategies for GC patients. These advances are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual GC patients in the era of precision medicine.

16.
J Bone Oncol ; 5(2): 80-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27335776

RESUMO

Long non-coding RNAs (lncRNAs) have been proved to play important roles in the tumorigenesis and development of several human malignancies. Our study aims to investigate the expression and function of lncRNA-UCA1 in osteosarcoma. lncRNA-UCA1 expression was detected in osteosarcoma tissues and cell lines by using qRT-PCR. Association between lncRNA-UCA1 levels and clinicopathological factors and patient's prognosis was analyzed. The roles of lncRNA-UCA1 in regulating osteosarcoma cell proliferation, apoptosis, migration, and invasion were evaluated in vitro. We found that lncRNA-UCA1 expression was upregulated in osteosarcoma tissues and cell lines. High lncRNA-UCA1 expression was significantly correlated with large tumor size, high tumor grade, positive distant metastasis, and advanced clinical stage. Multivariate regression analysis identified lncRNA-UCA1 overexpression as an independent unfavorable prognostic factor. lncRNA-UCA1 knockdown inhibited osteosarcoma cell proliferation, promoted cell apoptosis, and suppressed cell invasion and migration, whereas lncRNA-UCA1 overexpression showed opposite effects. These findings suggested that lncRNA-UCA1 may contribute to osteosarcoma initiation and progression, and would be not only a novel prognostic marker but also a potential therapeutic target for this disease.

17.
BBA Clin ; 4: 102-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26675493

RESUMO

BACKGROUND: Diabetes mellitus (DM), a metabolic disease, is characterized by impaired fasting glucose levels. Type 2 DM is adult onset diabetes. Long non-coding RNAs (lncRNAs) regulate gene expression and multiple studies have linked lncRNAs to human diseases. METHODS: Serum samples obtained from 96 participating veterans at JAH VA were deposited in the Research Biospecimen Repository. We used a two-stage strategy to identify an lncRNA whose levels correlated with T2DM. Initially we screened five serum samples from diabetic and non-diabetic individuals using lncRNA arrays. Next, GAS5 lncRNA levels were analyzed in 96 serum samples using quantitative PCR. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cutoff GAS5 for diagnosis of DM. RESULTS: Our results demonstrate that decreased GAS5 levels in serum were associated with diabetes in a cohort of US military veterans. The ROC analysis revealed an optimal cutoff GAS5 value of less than or equal to 10. qPCR results indicated that individuals with absolute GAS5 < 10 ng/µl have almost twelve times higher odds of having diabetes (Exact Odds Ratio [OR] = 11.79 (95% CI: 3.97, 37.26), p < 0.001). Analysis indicated area under curve (AUC) of ROC of 0.81 with 85.1% sensitivity and 67.3% specificity in distinguishing non-diabetic from diabetic subjects. The positive predictive value is 71.4%. CONCLUSION: lncRNA GAS5 levels are correlated to prevalence of T2DM. GENERAL SIGNIFICANCE: Assessment of GAS5 in serum along with other parameters offers greater accuracy in identifying individuals at-risk for diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA