Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(12): 11217-11224, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31548062

RESUMO

Heterosis is the beneficial deviation of crossbred progeny from the average of parental lines for a particular trait. Heterosis is due to nonadditive genetic effects with dominance and epistatic components. Recent advances in genotyping technology have encouraged researchers to estimate and scan heterosis components for a range of traits in crossbred populations, applying various definitions of such components. In this study, we defined the intralocus (dominance) component of heterosis using local genetic ancestry and performed genome-wide association analysis for admixed Swiss Fleckvieh bulls and their parental populations, Red Holstein Friesian and Swiss Simmental, for semen traits. A linear mixed model for 41,824 SNP, including SNP additive genetic, breed additive, and breed dominance effects on 1,178 bulls (148 Red Holstein Friesian, 213 Swiss Simmental, and 817 Swiss Fleckvieh) with a total of 43,782 measurements was performed. In total, 19 significant regions for breed dominance were identified for volume (2 regions on Bos taurus autosome 10 and 22) and percentage of live spermatozoa (17 regions on Bos taurus autosome 3, 4, 5, 7, 13, 14, and 17), and genes associated with spermatogenesis, sperm motility, and male fertility traits were located there. No significant region for breed dominance was detected for total number of spermatozoa. The signals for breed dominance were relatively wide, most likely due to limited numbers of recombination events in a small number of generations (10-15 generations) of crossbreeding in the recent Swiss Fleckvieh composite.


Assuntos
Bovinos/genética , Genes Dominantes , Sêmen , Animais , Cruzamento , Estudo de Associação Genômica Ampla/veterinária , Vigor Híbrido , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Motilidade dos Espermatozoides/genética , Espermatozoides
2.
Mol Ecol ; 25(11): 2482-98, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26880192

RESUMO

Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown.


Assuntos
Fluxo Gênico , Hibridização Genética , Populus/genética , Isolamento Reprodutivo , Seleção Genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Fertilidade , Genética Populacional , Genoma de Planta , Genótipo , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA