Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520221

RESUMO

Lung squamous cell carcinoma (LUSC) is one of the subtypes of lung cancer (LC) that contributes to approximately 25%-30% of its prevalence. Cancer-associated fibroblasts (CAFs) are key cellular components of the TME, and the large number of CAFs in tumour tissues creates a favourable environment for tumour development. However, the function of CAFs in the LUSC is complex and uncertain. First, we processed the scRNA-seq data and classified distinct types of CAFs. We also identified prognostic CAFRGs using univariate Cox analysis and conducted survival analysis. Additionally, we assessed immune cell infiltration in CAF clusters using ssGSEA. We developed a model with a significant prognostic correlation and verified the prognostic model. Furthermore, we explored the immune landscape of LUSC and further investigated the correlation between malignant features and LUSC. We identified CAFs and classified them into three categories: iCAFs, mCAFs and apCAFs. The survival analysis showed a significant correlation between apCAFs and iCAFs and LUSC patient prognosis. Kaplan-Meier analysis showed that patients in CAF cluster C showed a better survival probability compared to clusters A and B. In addition, we identified nine significant prognostic CAFRGs (CLDN1, TMX4, ALPL, PTX3, BHLHE40, TNFRSF12A, VKORC1, CST3 and ADD3) and subsequently employed multivariate Cox analysis to develop a signature and validate the model. Lastly, the correlation between CAFRG and malignant features indicates the potential role of CAFRG in promoting tumour angiogenesis, EMT and cell cycle alterations. We constructed a CAF prognostic signature for identifying potential prognostic CAFRGs and predicting the prognosis and immunotherapeutic response for LUSC. Our study may provide a more accurate prognostic assessment and immunotherapy targeting strategies for LUSC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Imunoterapia , Pulmão , Proteínas de Ligação a Calmodulina , Vitamina K Epóxido Redutases
2.
Cancer Sci ; 115(9): 2947-2960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031627

RESUMO

The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.


Assuntos
Carcinoma de Células Escamosas , Cisplatino , Neoplasias Pulmonares , Transcriptoma , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Citoplasma/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células/genética , Mutação , Regulação Neoplásica da Expressão Gênica , Masculino
3.
Cancer Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226222

RESUMO

We used a mathematical approach to investigate the quantitative spatial profile of cancer cells and stroma in lung squamous cell carcinoma tissues and its clinical relevance. The study enrolled 132 patients with 3-5 cm peripheral lung squamous cell carcinoma, resected at the National Cancer Center Hospital East. We utilized machine learning to segment cancer cells and stroma on cytokeratin AE1/3 immunohistochemistry images. Subsequently, a spatial form of Shannon's entropy was employed to precisely quantify the spatial distribution of cancer cells and stroma. This quantification index was defined as the spatial tumor-stroma distribution index (STSDI). The patients were classified as STSDI-low and -high groups for clinicopathological comparison. The STSDI showed no significant association with baseline clinicopathological features, including sex, age, pathological stage, and lymphovascular invasion. However, the STSDI-low group had significantly shorter recurrence-free survival (5-years RFS: 49.5% vs. 76.2%, p < 0.001) and disease-specific survival (5-years DSS: 53.6% vs. 81.5%, p < 0.001) than the STSDI-high group. In contrast, the application of Shannon's entropy without spatial consideration showed no correlation with patient outcomes. Moreover, low STSDI was an independent unfavorable predictor of tumor recurrence and disease-specific death (RFS; HR = 2.668, p < 0.005; DSS; HR = 3.057, p < 0.005), alongside the pathological stage. Further analysis showed a correlation between low STSDI and destructive growth patterns of cancer cells within tumors, potentially explaining the aggressive nature of STSDI-low tumors. In this study, we presented a novel approach for histological analysis of cancer tissues that revealed the prognostic significance of spatial tumor-stroma distribution in lung squamous cell carcinoma.

4.
Biochem Biophys Res Commun ; 692: 149344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070275

RESUMO

CD81 is a cell surface transmembrane protein of the tetraspanin family, which critically regulates signal transduction and immune response. Growing evidence has shown that CD81 plays important roles in tumorigenesis and influences immunotherapy response. Here, combining bio-informatics and functional analysis, we find that CD81 is a risk factor in lung squamous cell carcinoma (LUSC), whereas a protective factor in lung adenocarcinoma. In LUSC with high expression of CD81, the autophagy and JAK-STAT signaling pathway are activated. Meanwhile, the expression level of CD81 is negatively correlated with tumor mutational load (TMB), microsatellite instability (MSI), and neoantigen (NEO). Furthermore, patients with LUSC and high expression of CD81 do not respond to immunotherapy drugs, but can respond to chemotherapy drugs. Importantly, depletion of CD81 suppresses the proliferation of LUSC cell, and enhances the sensitivity to cisplatin. Our findings suggest that CD81 represents a potential target for cisplatin-based chemotherapy in patients with LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cisplatino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Tetraspanina 28/metabolismo
5.
Mol Carcinog ; 63(11): 2218-2236, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39136610

RESUMO

Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.


Assuntos
Carcinoma de Células Escamosas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt , Piroptose , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Prognóstico , Camundongos , Piroptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Masculino , Proteína Smad4/genética , Proteína Smad4/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
6.
J Transl Med ; 22(1): 372, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637790

RESUMO

BACKGROUND: The primary goal of this work is to identify biomarkers associated with lung squamous cell carcinoma and assess their potential for early detection of lymph node metastasis. METHODS: This study investigated gene expression in lymph node metastasis of lung squamous cell carcinoma using data from the Cancer Genome Atlas and R software. Protein-protein interaction networks, hub genes, and enriched pathways were analyzed. ZNF334 and TINAGL1, two less explored genes, were further examined through in vitro, ex vivo, and in vivo experiments to validate the findings from bioinformatics analyses. The role of ZNF334 and TINAGL1 in senescence induction was assessed after H2O2 and UV induced senescence phenotype determined using ß-galactosidase activity and cell cycle status assay. RESULTS: We identified a total of 611 up- and 339 down-regulated lung squamous cell carcinoma lymph node metastasis-associated genes (FDR < 0.05). Pathway enrichment analysis highlighted the central respiratory pathway within mitochondria for the subnet genes and the nuclear DNA-directed RNA polymerases for the hub genes. Significantly down regulation of ZNF334 gene was associated with malignancy lymph node progression and senescence induction has significantly altered ZNF334 expression (with consistency in bioinformatics, in vitro, ex vivo, and in vivo results). Deregulation of TINAGL1 expression with inconsistency in bioinformatics, in vitro (different types of lung squamous cancer cell lines), ex vivo, and in vivo results, was also associated with malignancy lymph node progression and altered in senescence phenotype. CONCLUSIONS: ZNF334 is a highly generalizable gene to lymph node metastasis of lung squamous cell carcinoma and its expression alter certainly under senescence conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Metástase Linfática/genética , Peróxido de Hidrogênio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Senescência Celular/genética , Proteínas de Transporte
7.
Cancer Cell Int ; 24(1): 315, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272147

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS: Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT: PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS: In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.

8.
Arch Biochem Biophys ; 751: 109842, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040224

RESUMO

Six-transmembrane epithelial antigen of the prostate 3 (STEAP3) has been reported to play a regulatory role in various types of cancers. However, its involvement in lung squamous cell carcinoma (LUSC) remains understudied. Here, we aimed to explore the biological functions and underlying mechanisms of STEAP3 in LUSC. Intersection genes associated with LUSC and ferroptosis were analyzed using the Venn method, STRING, GEPIA and UALCAN databases. The expression of STEAP3 was detected by qPCR and western blotting assay. Cell proliferation and viability were determined using the cell counting kit-8 assay and EDU staining. Oxidative stress and lipid peroxidation were measured by corresponding kits and DCFH-DA staining. Ferroptosis was evaluated by Phen Green SK and Western blot assay. The correlation between STEAP3 and EGFR was predicted by the TIMER and starBase database. Co-immunoprecipitation was conducted to verify the binding of STEAP3 and EGFR. The data demonstrated a significant upregulation of STEAP3 expression in LUSC cell lines. Silencing of STEAP3 suppressed H2170 cell viability and proliferation while promoting oxidative stress and lipid peroxidation through increased levels of MDA and ROS, as well as inhibited SOD activity. In addition, knockdown of STEAP3 induced ferroptosis through the regulation of ferroptosis-related proteins. Moreover, the binding between STEAP3 and EGFR was predicted and confirmed in LUSC. EGFR overexpression reversed the effects of STEAP3 silencing on H2170 cell viability, proliferation, oxidative stress, and ferroptosis. To summarize, the inhibition of STEAP3/EGFR may serve as a promising therapeutic target for LUSC treatment, as it can suppress LUSC proliferation and promote lipid peroxidation and ferroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Ferroptose , Neoplasias Pulmonares , Masculino , Humanos , Próstata , Carcinoma de Células Escamosas/genética , Proliferação de Células , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Pulmão , Linhagem Celular Tumoral
9.
BMC Cancer ; 24(1): 585, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741038

RESUMO

OBJECTIVE: The optimal timing for surgery following neoadjuvant immunochemotherapy for lung squamous cell carcinoma appears to be a topic of limited data. Many clinical studies lack stringent guidelines regarding this timing. The objective of this study is to explore the effect of the interval between neoadjuvant immunochemotherapy and surgery on survival outcomes in patients with lung squamous cell carcinoma. METHODS: This study conducted a retrospective analysis of patients with lung squamous cell carcinoma who underwent neoadjuvant immunochemotherapy between January 2019 and October 2022 at The First Affiliated Hospital, Zhejiang University School of Medicine. Patients were divided into two groups based on the treatment interval: ≤33 days and > 33 days. The primary observational endpoints of the study were Disease-Free Survival (DFS) and Overall Survival (OS). Secondary observational endpoints included Objective response rate (ORR), Major Pathological Response (MPR), and Pathological Complete Remission (pCR). RESULTS: Using the Kaplan-Meier methods, the ≤ 33d group demonstrated a superior DFS curve compared to the > 33d group (p = 0.0015). The median DFS for the two groups was 952 days and 590 days, respectively. There was no statistical difference in the OS curves between the groups (p = 0.66), and the median OS was not reached for either group. The treatment interval did not influence the pathologic response of the tumor or lymph nodes. CONCLUSIONS: The study observed that shorter treatment intervals were associated with improved DFS, without influencing OS, pathologic response, or surgical safety. Patients should avoid having a prolonged treatment interval between neoadjuvant immunochemotherapy and surgery.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Terapia Neoadjuvante , Humanos , Masculino , Terapia Neoadjuvante/métodos , Feminino , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Intervalo Livre de Doença , Pneumonectomia , Tempo para o Tratamento , Adulto , Resultado do Tratamento
10.
BMC Cancer ; 24(1): 944, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095743

RESUMO

BACKGROUNDS: Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS: Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS: FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS: High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proliferação de Células/genética , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Camundongos , Linhagem Celular Tumoral , Masculino , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Prognóstico , Pessoa de Meia-Idade , Camundongos Nus , Invasividade Neoplásica
11.
BMC Cancer ; 24(1): 561, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711034

RESUMO

Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.


Assuntos
Carcinoma de Células Escamosas , Dano ao DNA , Neoplasias Pulmonares , Tenascina , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Tenascina/genética , Tenascina/metabolismo , Dano ao DNA/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo
12.
J Pathol ; 259(1): 21-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178315

RESUMO

Lung squamous cell carcinoma (LUSC) is a primary subtype of lung cancer with limited therapeutic options and poor prognosis, and tumour-infiltrating myeloid cells (TIMs) are key regulators of LUSC. However, the correlation between the abundance of TIM subtypes and clinical outcomes of LUSC remains unexplored. This study aimed to develop and validate a prognostic model for low- and high-risk patients with LUSC based on myeloid cell microenvironments. TIM markers in the tumoural (T) and stromal (S) regions were quantified using immunohistochemistry for 502 LUSC patients. L1-penalized Cox regression was used to develop a myeloid survival score (MSS) model based on the training cohort, followed by validation in distinct cohorts from multiple centres. RNA sequencing and immunostaining were used to examine the mechanisms of myeloid cells in LUSC progression and predict potential drug targets and therapeutic agents. Of the 12 myeloid markers, CD163T, CD163S, and S100A12T were highly associated with overall survival (OS) in LUSC patients. The MSS of the three myeloid signatures accurately categorized LUSC patients into risk categories, with an observable difference in OS between the training and validation cohorts. Tumours with high MSS were associated with enhanced antioxidative ability and hedgehog signalling and a shift to a more pro-tumorigenic microenvironment, accompanied by a reduced tumour cell immunogenicity and increased CD8+ T cell exhaustion patterns. Additionally, in high-risk patients, potential drug targets and compounds regulating hedgehog signalling were identified. Our study provides the first prognostic myeloid signature for LUSC, which may help advance precision medicine. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Proteínas Hedgehog , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Pulmão/patologia , Microambiente Tumoral
13.
Mol Biol Rep ; 51(1): 255, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302782

RESUMO

BACKGROUND: Mounting evidence suggests that lung adenocarcinoma (LAC) and lung squamous cell carcinoma (LSC) have different biological behaviors and therapeutic regimens in clinical practice. However, limited improvements in molecular differential diagnosis of the two entities have been achieved in recent decades. We aimed to find novel markers that could define non-small cell lung cancer (NSCLC) subtypes. METHODS: We first explored publically available databases to search for DNA methylation signatures that enable a precise discrimination of LAC and LSC. Next-generation sequencing (NGS) was then used to analyze the methylation status and sites of candidate genes in LAC/LSC tissue samples, and a quantitative methylation-sensitive PCR (qMS-PCR) assay was conducted to test the performance of the selected maker in tissue samples and bronchoalveolar lavage fluid (BALF) specimens. RESULTS: We screened 19 top-ranked methylation loci that are differentially methylated between LAC and LSC. Among these hits, 6 methylation sites are enriched within the PREX1 gene promoter, thus becoming our focus. NGS analysis confirmed markedly higher PREX1 methylation levels in LAC than in LSC and revealed the right sites for detection of PREX1 methylation. Furthermore, PREX1 methylation analysis in lung cancer tissue samples defined 9 of 11 pathologically proven LACs, as well as 12 of 14 LSCs. In addition, ~ 80% LAC BALF samples showed methylated PREX1 compared to substantially lower test positivity (0-9%) of it in LSC and other lung conditions (P < 0.01). CONCLUSION: Our pilot study identified a unique epigenetic signature that could effectively distinguish LAC from LSC in various lung samples. It may enhance our in-depth understanding of the biology of lung cancer and pave the way for better accurate diagnosis and treatment stratification in the future.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Projetos Piloto , Adenocarcinoma/patologia , Metilação de DNA/genética , Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Epigênese Genética/genética , Biomarcadores Tumorais/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-39168830

RESUMO

Lung squamous cell carcinoma (LUSC) is a malignancy with limited therapeutic options. Immunogenic cell death (ICD) has the potential to enhance the efficacy of cancer therapy by triggering immune responses. We aimed to explore the potential of ICD-based classification in predicting prognosis and response to immunotherapy for LUSC. RNA-seq information and clinical data of LUSC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. ICD-related gene expressions in LUSC samples were analyzed by consensus clustering. Subsequently, differentially expressed genes (DEGs) between different ICD-related subsets were analyzed. Tumor mutation burden, immune cell infiltration, and survival analyses were conducted between different ICD subsets. Finally, an ICD-related risk signature was constructed and evaluated in LUSC patients, and the immunotherapy responses based on the gene expressions were also forecasted. ICD-high and ICD-low groups were defined, and 1466 DEGs were identified between the two subtypes. These DEGs were mainly enriched in collagen-containing extracellular matrix, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, and neuroactive ligand-receptor interaction. Furthermore, the ICD-low group exhibited a favorable prognosis, enhanced TTN and MUC16 mutation frequencies, increased infiltrating immune cells, and downregulated immune checkpoint expressions. Furthermore, we demonstrated that an ICD-related model (based on CD4, NLRP3, NT5E, and TLR4 genes) could forecast the prognosis of LUSC, and ICD risk scores were lower in the responder group. In summary, the predicted values of ICD-related genes (CD4, NLRP3, NT5E, and TLR4) for the prognosis and response to immunotherapy in LUSC were verified in the study, which benefits immunotherapy-based interventions for LUSC patients.

15.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755605

RESUMO

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Fenótipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Receptores CCR2/genética , Linfócitos T CD8-Positivos/imunologia , Antígenos CD28/genética
16.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256214

RESUMO

Lung squamous cell carcinoma (LUSC) is one of the most common malignancies. There is growing evidence that glycolysis-related genes play a critical role in tumor development, maintenance, and therapeutic response by altering tumor metabolism and thereby influencing the tumor immune microenvironment. However, the overall impact of glycolysis-related genes on the prognostic significance, tumor microenvironment characteristics, and treatment outcome of patients with LUSC has not been fully elucidated. We used The Cancer Genome Atlas (TCGA) dataset to screen glycolysis-related genes with prognostic effects in LUSC and constructed signature and nomogram models using Lasso and Cox regression, respectively. In addition, we analyzed the immune infiltration and tumor mutation load of the genes in the models. We finally obtained a total of glycolysis-associated DEGs. The signature model and nomogram model had good prognostic power for LUSC. Gene expression in the models was highly correlated with multiple immune cells in LUSC. Through this analysis, we have identified and validated for the first time that glycolysis-related genes are highly associated with the development of LUSC. In addition, we constructed the signature model and nomogram model for clinical decision-making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma de Células Escamosas/genética , Glicólise/genética , Neoplasias Pulmonares/genética , Pulmão , Microambiente Tumoral/genética
17.
Rev Invest Clin ; 76(2): 116-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740381

RESUMO

UNASSIGNED: Background: Since to the prognosis of lung squamous cell carcinoma is generally poor, there is an urgent need to innovate new prognostic biomarkers and therapeutic targets to improve patient outcomes. Objectives: Our goal was to develop a novel multi-gene prognostic model linked to neutrophils for predicting lung squamous cell carcinoma prognosis. Methods: We utilized messenger RNA expression profiles and relevant clinical data of lung squamous cell carcinoma patients from the Cancer Genome Atlas database. Through K-means clustering, least absolute shrinkage and selection operator regression, and univariate/multivariate Cox regression analyses, we identified 12 neutrophil-related genes strongly related to patient survival and constructed a prognostic model. We verified the stability of the model in the Cancer Genome Atlas database and gene expression omnibus validation set, demonstrating the robust predictive performance of the model. Results: Immunoinfiltration analysis revealed remarkably elevated levels of infiltration for natural killer cells resting and monocytes in the high-risk group compared to the low-risk group, while macrophages had considerably lower infiltration in the high risk group. Most immune checkpoint genes, including programmed cell death protein 1 and cytotoxic T-lymphocyte-associated antigen 4, exhibited high expression levels in the high risk group. Tumor immune dysfunction and exclusion scores and immunophenoscore results suggested a potential inclination toward immunotherapy in the "RIC" version V2 revised high risk group. Moreover, prediction results from the CellMiner database revealed great correlations between drug sensitivity (e.g., Vinorelbine and PKI-587) and prognostic genes. Conclusion: Overall, our study established a reliable prognostic risk model that possessed significant value in predicting the overall survival of lung squamous cell carcinoma patients and may guide personalized treatment strategies. (Rev Invest Clin. 2024;76(2):116-31).


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética
18.
Pathologica ; 116(1): 13-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38482671

RESUMO

The WHO Classification of Tumors, Thoracic Tumors, 5th edition, has outlined the use of TTF-1 and ΔNP63/P40 to discriminate between adenocarcinoma and squamous cell carcinoma. In 2015, the first description of a rare non-small cell lung carcinoma featuring co-expression of glandular and squamous differentiation within most of the same individual tumor cells was reported on, with ultrastructural and molecular demonstration of such a biphenotypic differentiation. We herein describe an additional case of this rare tumor entity, which is confirmed to be an aggressive neoplasm despite potential targets of therapy.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Pulmão/patologia , Prognóstico , Biomarcadores Tumorais
19.
Proteomics ; 23(7-8): e2200021, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36228107

RESUMO

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.


Assuntos
Carcinoma de Células Escamosas , Proteômica , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Carcinoma de Células Escamosas/patologia , Inflamação/metabolismo , Proteínas da Matriz Extracelular/metabolismo
20.
BMC Bioinformatics ; 24(1): 238, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280525

RESUMO

Lung squamous cell carcinoma (LUSC) is associated with a worse prognosis than other histological subtypes of non-small cell lung cancer. Due to the vital role of CD8+ T cells in anti-tumor immunity, the characterization of CD8+ T cell infiltration-related (CTLIR) gene signature in LUSC is worthy of in-depth exploration. In our study, tumor tissues of LUSC patients from Renmin Hospital of Wuhan University were stained by multiplex immunohistochemistry to evaluate the density of infiltrated CD8+ T cells and explore the correlation with immunotherapy response. We found that the proportion of LUSC patients who responded to immunotherapy was higher in the high density of CD8+ T cell infiltration group than in the low density of CD8+ T cell infiltration group. Subsequently, we collected bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) database. The abundance of infiltrating immune cells in LUSC patients was analyzed by using CIBERSORT algorithm, and weighted correlation network analysis was performed to identify the co-expressed gene modules related to CD8+ T cells. We then developed a prognostic gene signature based on CD8+ T cell co-expressed genes and calculated the CTLIR risk score, which stratified LUSC patients into high-risk and low-risk groups. With univariate and multivariate analyses, the gene signature was identified as an independent prognostic factor in LUSC patients. The overall survival of LUSC patients in the high-risk group was significantly shorter than that of the low-risk group in the TCGA cohort, which was validated in Gene Expression Omnibus datasets. We analyzed immune cell infiltration in the tumor microenviroment and found fewer CD8+ T cells and more regulatory T cell infiltration in the high-risk group, which is characterized as an immunosuppressive phenotype. Furthermore, the LUSC patients in the high-risk group were predicted to have a better response to immunotherapy than those in the low-risk group when treated with PD-1 and CTLA4 inhibitors. In conclusion, we performed a comprehensive molecular analysis of the CTLIR gene signature in LUSC and constructed a risk model for LUSC patients to predict prognosis and immunotherapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Imunoterapia , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA