Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
FASEB J ; 35(2): e21185, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191543

RESUMO

Autophagy, a cellular stress response to starvation and bacterial infection, is executed by double-membrane-bound organelles called autophagosomes. Autophagosomes transfer cytosolic material to acidified lysosomes for degradation following soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-dependent fusion processes. Many of the autophagy-related disorders stem from defective end-step proteolysis inside lysosomes. The role of epithelial cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel has been argued to be critical for efficient lysosomal clearance; however, its context to autophagic clearance and the underlying mechanism is poorly defined. Here, we report that syntaxin17 (Stx17), an autophagic SNARE protein interacts with CFTR under nutritional stress and bacterial infection and incorporates it into mature autophagosomes to mediate an efficient lysosomal clearance. Lack of CFTR function and Stx17 and loss of CFTR-Stx17 interaction impairs bacterial clearance. We discover a specialized role of the Stx17-CFTR protein complex that is critical to prevent defective autophagy as has been the reported scenario in CF airway epithelial cells, infectious diseases, and lysosomal clearance disorders.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lisossomos/metabolismo , Nutrientes/deficiência , Ligação Proteica , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Proteínas Qa-SNARE/genética , Transfecção
2.
FASEB J ; 31(2): 598-609, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148781

RESUMO

The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine ß-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including ß-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.


Assuntos
Autofagia/fisiologia , Regulação da Expressão Gênica/fisiologia , Homocisteína/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Serina-Treonina Quinases TOR/genética
3.
Aging Cell ; 16(6): 1219-1233, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28971552

RESUMO

Cellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient-sensing pathway is regulated at the lysosomal membrane by a number of proteins for which deficiency triggers widespread aging phenotypes in tested animal models. In response to environmental cues, this recently discovered lysosomal nutrient-sensing complex regulates autophagy transcriptionally through conserved factors, such as the transcription factors TFEB and FOXO, associated with lifespan extension. This key metabolic pathway strongly depends on nucleocytoplasmic compartmentalization, a cellular phenomenon gradually lost during aging. In this review, we discuss the current progress in understanding the contribution of mTOR-regulating factors to autophagy and longevity. Furthermore, we review research on the regulation of metabolism conducted in multiple aging models, including Caenorhabditis elegans, Drosophila and mouse, and human iPSCs. We suggest that conserved molecular pathways have the strongest potential for the development of new avenues for treatment of age-related diseases.


Assuntos
Serina-Treonina Quinases TOR/genética , Envelhecimento , Humanos , Serina-Treonina Quinases TOR/metabolismo
4.
Methods Cell Biol ; 126: 45-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665440

RESUMO

The general view of the lysosome as the terminal end of cellular catabolic pathways, has started to change due to the recent discoveries of a lysosomal nutrient sensing machinery and of a lysosome-to-nucleus signaling mechanism that modulate lysosomal function by way of the master transcriptional regulator TFEB. Lysosomal biogenesis and autophagy are coordinated by TFEB, whose function is regulated by phosphorylation. TFEB interacts with and is phosphorylated by mTORC1 at the lysosomal surface. Thus, conditions resulting in inhibition of mTOR, such as starvation and lysosomal stress, promote TFEB nuclear translocation. Preliminary evidences showing that the TFEB activation are able to ameliorate the phenotype of lysosomal storage disorders and more common neurodegenerative diseases have opened an extraordinary possibility for the development of innovative therapies. Research in TFEB and lysosomal function has continued to advance and attract interest due to increased understanding of the mechanisms behind lysosomal function. In this paper, we present a set of procedures that facilitate examination of TFEB function and its related processes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Redes Reguladoras de Genes , Lisossomos/metabolismo , Proteínas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA