RESUMO
There is limited information regarding the influence of mangrove growth on the morphological evolution of intertidal mudflats. In this study, Tan Phu Dong district, Tien Giang Province, Vietnam, was selected for investigating how mangrove growth influenced the morphological evolution of an intertidal mudflat. The authors analyzed a series of satellite images (from 1995 and 2022), calculated the enhanced vegetation index (EVI), and documented field visits and observations in pursuit of the objective of the study. The findings revealed that fine-grained sediment accumulated as unconsolidated substratum (US) in the first step of the morphological evolution of the intertidal mudflat, with sediment accumulation of 910 ha in 1995. The US provided favorable conditions for mangroves to grow, while mangrove growth helped compact the US into a compact substratum (CS) in addition to promoting continuous sediment accumulation, increased the vegetation cover of the island, and elevated the substrate density of the remaining areas. As a result, the US and CS decreased steadily between 1995 and 2020, from 910 ha in 1995 to 401 ha in 2020 and from 433 ha in 2005 to 111 ha in 2020, respectively. Meanwhile, the low-vegetation area (LVA), medium-vegetation area (MVA), and high vegetation area (HVA) gradually increased between 1995 and 2015, from 0 ha in 1995 to 104 ha in 2015, from 0 ha in 1995 to 96 ha in 2015, and from 0 ha in 1995 to 114 ha in 2015, respectively. However, the LVA decreased slightly between 2015 and 2020 due to significant sand accumulation, which significantly killed the mangrove trees. In contrast, the MVA and HVA steadily increased between 2015 and 2020, from 96 ha in 2015 to 116 ha in 2020 and from 114 ha in 2015 to 221 ha in 2020, respectively. In 2022, there was a steady increase in HVA (298 ha in 2022), although the date of the 2022 satellite retrieval was 28 January 2022. This study recommends that the technical design of the existing coastal protection works should be revised or adapted to take account of sediment accumulation as the first step in the morphological evolution of the examined intertidal mudflat, rather than mangrove growth.
RESUMO
Shrubs are invading into grasslands around the world, but we don't yet know how these shrubs will fare in a warmer future. In ecotonal coastal wetland ecosystems, woody mangroves are encroaching into herbaceous salt marshes owing to changes in temperature, precipitation, and sediment dynamics. Increasing mangrove biomass in wetlands often increases carbon storage, which is high in these productive ecosystems, but little is known about how mangrove growth will change in response to warming. To address this knowledge gap, we deployed warming experiments at three coastal wetland sites along a latitudinal gradient in northeast Florida where Avicennia germinans, black mangroves, are encroaching into salt marshes. We achieved air temperature warming (+1.6°C during the day) at all three sites and measured stem elongation, canopy height and area changes, and leaf and node number. After 2 yr of warming, we found that mangrove growth rate in height increased due to warming. Warming increased stem elongation by 130% over unwarmed control plots after 1 yr at the northern site. Mangrove growth in canopy area did not respond to warming. Site differences in growth rate were pronounced, and mangrove growth in both height and area were lowest at the northern site, despite greater impacts of warming at that site. We also found that area-based relative growth rate was five times higher across all treatments than height-based relative growth rate, indicating that mangroves are growing wider rather than taller in these ecotonal environments. Our findings indicate that the growth effect of experimental warming depends on site characteristics and growth parameter measured. We also propose that differential mangrove growth across the three sites may be driven by biotic factors such as the identity of the salt marsh species into which mangroves are encroaching. Our results suggest that, as seen in other ecosystems, wetland plants may respond most strongly to warming at their poleward range edge.