Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2313447120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048472

RESUMO

Astrobiology studies are a top priority in answering one of the most fundamental questions in planetary science: Is there life beyond Earth? Saturn's icy moon Enceladus is a prime target in the search for life in our solar system, identified by NASA as the second-highest priority site for a flagship mission in the next decade. The orbital sampling technique of impact ionization mass spectrometry indicated the presence of complex organics in the small icy plume particles ejected by Enceladus encountered previously by Cassini. However, high interaction velocities caused ambiguity as to the origin and identity of the organics. Laboratory validation of this technique is needed to show that biosignature molecules can survive an impact at hypervelocity speeds for detection. Here, we present results on the hypervelocity impact of organic-laden submicron ice grains for in situ mass spectrometric characterization with the first technique to accurately replicate this plume sampling scenario: the Hypervelocity Ice Grain Impact Mass Spectrometer. Our results show good agreement with Cassini data at comparable compositions. We show that amino acids entrained in ice grains can be detected intact after impact at speeds up to 4.2 km/s and that salt reduces their detectability, validating the predictions from other model systems. Our results provide a benchmark for this orbital sampling method to successfully detect signs of life and for the interpretation of past and future data. This work has implications not only for a potential Enceladus mission but also for the forthcoming Europa Clipper mission.

2.
Mass Spectrom Rev ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610153

RESUMO

Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.

3.
New Phytol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021246

RESUMO

Even though they share many thematical overlaps, plant metabolomics and stable isotope ecology have been rather separate fields mainly due to different mass spectrometry demands. New high-resolution bioanalytical mass spectrometers are now not only offering high-throughput metabolite identification but are also suitable for compound- and intramolecular position-specific isotope analysis in the natural isotope abundance range. In plant metabolomics, label-free metabolic pathway and metabolic flux analysis might become possible when applying this new technology. This is because changes in the commitment of substrates to particular metabolic pathways and the activation or deactivation of others alter enzyme-specific isotope effects. This leads to differences in intramolecular and compound-specific isotope compositions. In plant isotope ecology, position-specific isotope analysis in plant archives informed by metabolic pathway analysis could be used to reconstruct and separate environmental impacts on complex metabolic processes. A technology-driven linkage between the two disciplines could allow to extract information on environment-metabolism interaction from plant archives such as tree rings but also within ecosystems. This would contribute to a holistic understanding of how plants react to environmental drivers, thus also providing helpful information on the trajectories of the vegetation under the conditions to come.

4.
Environ Sci Technol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332486

RESUMO

Plastic debris, including nanoplastic particles (NPPs), has emerged as an important global environmental issue due to its detrimental effects on human health, ecosystems, and climate. Atmospheric processes play an important role in the transportation and fate of plastic particles in the environment. In this study, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was employed to establish the first online approach for identification and quantification of airborne submicrometer polystyrene (PS) NPPs from laboratory-generated and ambient aerosols. The fragmentation ion C8H8+ is identified as the major tracer ion for PS nanoplastic particles, achieving an 1-h detection limit of 4.96 ng/m3. Ambient PS NPPs measured at an urban location in Texas are quantified to be 30 ± 20 ng/m3 by applying the AMS data with a constrained positive matrix factorization (PMF) method using the multilinear engine (ME-2). Careful analysis of ambient data reveals that atmospheric PS NPPs were enhanced as air mass passed through a waste incinerator plant, suggesting that incineration of waste may serve as a source of ambient NPPs. The online quantification of NPPs achieved through this study can significantly improve our understanding of the source, transport, fate, and climate effects of atmospheric NPPs to mitigate this emerging global environmental issue.

5.
Environ Res ; 256: 119223, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810830

RESUMO

Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.


Assuntos
Aminoácidos , Cadeia Alimentar , Isótopos de Nitrogênio , Hidrólise , Aminoácidos/análise , Aminoácidos/química , Animais , Isótopos de Nitrogênio/análise , Ácido Clorídrico/química , Atum
6.
Biomed Chromatogr ; 38(8): e5920, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844433

RESUMO

This study describes the development of a reliable and linear analytical method for precisely determining dimethylamine impurity in N,N-dimethylformamide solvent utilizing a benzoyl chloride derivatization reagent and a gas chromatography mass spectrometer. Benzoyl chloride was used to derivatize dimethylamine. At normal temperature, benzoyl chloride combined with dimethylamine, producing N,N-dimethylbenzamide. This method separated N,N-dimethylbenzamide using Rtx-5 amine (30 m × 0.32 mm × 1.50 µm) as the stationary phase, helium as the carrier gas, argon as the collision gas, and methanol as the diluent. The column flow rate was 2 mL/min. The retention time of N,N-dimethylbenzamide was determined to be 8.5 min. Precision, linearity, and accuracy were tested using ICH Q2 (R2) and USP<1225> guidelines. The percentage coefficient of variation (CV) for N,N-dimethylbenzamide in the system suitability parameter was 1.1%. The correlation coefficient of N,N-dimethylbenzamide was found to be >0.99. In the method precision parameter, the % CV for N,N-dimethylbenzamide was found to be 1.9%, whereas the % CV for N,N-dimethylbenzamide was 1.2% in intermediate precision. The percentage recovery of N,N-dimethylbenzamide was determined to be between 80% and 98%.


Assuntos
Dimetilaminas , Dimetilformamida , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Dimetilformamida/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Dimetilaminas/química , Dimetilaminas/análise , Benzamidas/análise , Benzamidas/química , Limite de Detecção , Solventes/química , Benzoatos
7.
Biomed Chromatogr ; 38(6): e5850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38387606

RESUMO

In the pharmaceutical industry, effective risk management and control strategies for potential genotoxic impurities are of paramount importance. The current study utilized GC-MS to evaluate a precise, linear, and accurate analytical method for quantifying ethylenediamine present in tripelennamine hydrochloride using phthalaldehyde as a derivatizing agent. When phthalaldehyde is sonicated for 10 min at room temperature, it reacts with ethylenediamine to form (1z,5z)-3,4-dihydrobenzo[f][1,4]diazocine. This approach minimizes matrix interference issues and resolves sample preparation difficulties encountered during ethylenediamine identification in GC-MS. In this method, helium serves as the carrier gas, while methanol acts as the diluent. The stationary phase consists of a DB-5MS column (30 m × 0.25 mm × 0.25 µm) with a flow rate of 1.5 mL/min. The retention time of (1z,5z)-3,4-dihydrobenzo[f][1,4]diazocine was determined to be 6.215 min. The method validation demonstrated limits of detection and quantification for (1z,5z)-3,4-dihydrobenzo[f][1,4]diazocine at 0.4 and 1.0 ppm, respectively, with a linearity range spanning from 1 to 30 ppm concentration with respect to the specification level. System suitability, precision, linearity, and accuracy of the current method were assessed in accordance with guidelines, yielding results deemed suitable for the intended use.


Assuntos
Contaminação de Medicamentos , Etilenodiaminas , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , o-Ftalaldeído , Cromatografia Gasosa-Espectrometria de Massas/métodos , Etilenodiaminas/química , Reprodutibilidade dos Testes , o-Ftalaldeído/química , Modelos Lineares
8.
Artigo em Zh | MEDLINE | ID: mdl-38964911

RESUMO

Objective: To establish collection methods and laboratory testing methods for qualitative and quantitative analysis of 9 typical active pharmaceutical ingredient in the workplace air. Methods: In December 2021, a mixed solution of nine analytes was prepared and then dispersed in aerosol state to simulate sampling. Glass fiber filter membrane was selected as air collector and collected active pharmaceutical ingredient in the air at a rate of 2.0 L/min for 15 minutes. Then, the obtained filter membrane samples were eluted with 25%ACN/75%MeOH. Finally, the eluent was qualitatively and quantitatively analyzed with liquid chromatography-triple quadrupole mass spectrometer. Results: This method could effectively collect active pharmaceutical ingredient in the air, with an average sampling efficiency of more than 98.5%. The linear correlation coefficient r was greater than 0.9990. The lower limit of quantification for each analyte ranged from 0.6~500.0 ng/ml, and the average recovery rate ranged from 97.6%~102.5%. Conclusion: This method could simultaneously collect 9 active pharmaceutical ingredient in the workplace air, and could provide accurate qualitative and quantitative analysis in subsequent laboratory tests.


Assuntos
Poluentes Ocupacionais do Ar , Monitoramento Ambiental , Local de Trabalho , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Cromatografia Líquida/métodos , Exposição Ocupacional/análise
9.
Environ Sci Technol ; 57(2): 1039-1048, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580374

RESUMO

Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.


Assuntos
Poluentes Atmosféricos , Espécies Reativas de Oxigênio/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Caspase 3/análise , Material Particulado/análise , Aerossóis/análise
10.
Environ Sci Technol ; 57(20): 7764-7776, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37155674

RESUMO

Oxygenated organic molecules (OOMs) are critical intermediates linking volatile organic compound oxidation and secondary organic aerosol (SOA) formation. Yet, the understanding of OOM components, formation mechanism, and impacts are still limited, especially for urbanized regions with a cocktail of anthropogenic emissions. Herein, ambient measurements of OOMs were conducted at a regional background site in South China in 2018. The molecular characteristics of OOMs revealed dominant nitrogen-containing products, and the influences of different factors on OOM composition and oxidation state were elucidated. Positive matrix factorization analysis resolved the complex OOM species to factors featured with fingerprint species from different oxidation pathways. A new method was developed to identify the key functional groups of OOMs, which successfully classified the majority species into carbonyls (8%), hydroperoxides (7%), nitrates (17%), peroxyl nitrates (10%), dinitrates (13%), aromatic ring-retaining species (6%), and terpenes (7%). The volatility estimation of OOMs was improved based on their identified functional groups and was used to simulate the aerosol growth process contributed by the condensation of those low-volatile OOMs. The results demonstrate the predominant role of OOMs in contributing sub-100 nm particle growth and SOA formation and highlight the importance of dinitrates and anthropogenic products from multistep oxidation.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Hong Kong , Nitratos , Terpenos , Aerossóis/análise
11.
Environ Sci Technol ; 57(38): 14150-14161, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699525

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.


Assuntos
Estresse Oxidativo , Oxigênio , Espécies Reativas de Oxigênio , Aerossóis , Sudeste dos Estados Unidos
12.
Environ Res ; 223: 115444, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758921

RESUMO

The flue gas composition is often measured using a combination of techniques that differ in terms of both physical operation principle and type of output. Gas analyzers, FTIR spectrometers, and mass spectrometers are the most popular tools used for this purpose. In this research, we study the composition of the flue gas from the combustion of fuel slurries and dry composite fuels based on industrial and agricultural waste. It has been established that the use of slurry fuels makes the anthropogenic emissions 2-4 times lower than from the combustion of coal slime. For example, the CO2 emissions from the combustion of dry coal slime were 2.5-3.7 times higher than from the combustion of slurry fuels. In addition, the combustion of slurry fuels made it possible to cut down the nitrogen oxide emissions by 1.3-1.5 times and sulfur oxide emissions by 1.3-2.7 times. A comparison of the results obtained using different measurement techniques has shown that differences between the CO and CO2 content in the combustion products measured by a gas analyzer and an FTIR spectrometer did not exceed 20%. The use of FTIR spectroscopy provided new knowledge on the concentrations of hydrocarbons from the combustion of fuels based on promising industrial wastes.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Dióxido de Carbono/análise , Água , Óxidos de Nitrogênio/análise , Resíduos Industriais , Poluentes Atmosféricos/análise
13.
J Sep Sci ; 46(7): e2200840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36748860

RESUMO

A method for simultaneous determination of 10 first-generation histamine H1 receptor blockers in feeds by ultra-high-performance liquid chromatography triple quadrupole mass spectrometry combined with solid phase extraction. Instrument conditions, extraction solvents, and purification methods have been optimized. Under the optimum conditions, these analytes were separated effectively at 6 min. These feeds have been extracted by acid acetonitrile and purified by mixed cation exchange solid-phase extraction. The performance of this method meets the requirements of veterinary residue detection in feeds in China. It is appropriate for the confirmatory monitoring and quantitative analysis of 105 feed samples, five kinds of histamine H1 receptor blockers have been detected in 10 samples.


Assuntos
Receptores Histamínicos H1 , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , China
14.
Chem Biodivers ; 20(8): e202300793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37485567

RESUMO

The utilization of rhizomes from the genus Atractylodes has been challenging due to their closely related origins. In this study, we developed an analytical strategy to differentiate Atractylodes lancea (A. lancea), Atractylodes chinensis (A. chinensis), Atractylodes japonica (A. japonica), and Atractylodes macrocephala (A. macrocephala), and compared their volatile compositions. Gas chromatography-mass spectrometry (GC/MS) was used to analyze the volatile profiles of essential oils extracted from 59 batches of samples. Chemometric methods enabled a better understanding of the differences in volatile oils between the four species and identified significant components affecting their classification and quality. A total of 50 volatile components were identified from the essential oils by GC/MS. Unsupervised and supervised chemometric analyses accurately distinguished A. lancea, A. chinensis, A. japonica, and A. macrocephala. Furthermore, five characteristic chemical markers, namely hinesol, ß-eudesmol, atractylon, atractylodin and atractylenolide I, were obtained, and their respective percentage contents in individual species and samples were determined. This study provides a valuable reference for the quality evaluation of medicinal plants with essential oils and holds significance for species differentiation and the rational clinical application of Atractylodes herbs.


Assuntos
Atractylodes , Óleos Voláteis , Plantas Medicinais , Cromatografia Gasosa-Espectrometria de Massas , Plantas Medicinais/química , Atractylodes/química , Quimiometria , Óleos Voláteis/química
15.
Subst Use Misuse ; 58(12): 1528-1535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424449

RESUMO

Background: Opioid overdose deaths continue to present major public health challenges in the U.S. Harm reduction agencies have begun using drug checking technologies to identify adulterants in the local drug supply and reduce overdose risk among people who use drugs (PWUD). Through qualitative and ethnographic methods, we assess the use of portable mass spectrometers at a harm reduction agency in a Northeastern U.S. city. Methods: We conducted participant observation, and on-the-spot qualitative interviews with harm-reduction staff members (n = 10) and their clientele (n = 17) between May 2019 and December 2020. Interviews explored emic views on drug checking (process, logistics, technology), and perceived benefits and challenges. We used thematic content analysis techniques to code and analyze interview transcriptions. Results: Implementation and use of drug checking devices were not free of challenges and malfunctions, often delaying drug checking opportunities and increasing suspicions and distrust among clients. Yet, staff members perceived that when working properly, or in conjunction with an additional device, they offered information about purchased drugs that could empower clients and potentially lead to positive behavior change. Use of these devices also enhanced engagement between harm reduction staff and PWUD, facilitating meaningful conversations around self-advocacy and harm reduction engagement. Conclusion: We report qualitative findings on the experiences and perceptions of drug checking devices among harm reduction staff and PWUD. Our findings indicate that use of this technology has the potential to decrease risk behaviors, expand health promotion services, and help reduce high rates of fentanyl-related overdose.


Assuntos
Overdose de Drogas , Drogas Ilícitas , Overdose de Opiáceos , Humanos , Fentanila , Overdose de Drogas/prevenção & controle , Saúde Pública , Tecnologia , Redução do Dano , Analgésicos Opioides
16.
Mikrochim Acta ; 190(10): 381, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697041

RESUMO

MnO2 nanosheets (MnO2NSs) were synthesized by one-step method, and MnO2NSs were applied to A549 cell chemodynamic Therapy (CDT). The cytotoxicity, redox ability, and reactive oxygen species production of MnO2NSs have been investigated, and differences in cell metabolism during CDT were determined using liquid chromatography-mass spectrometry (LC-MS/MS). In addition, the metabolites of A549 lung cancer cells affected by MnO2NSs treatment are identified; metabolite differences were identified by PCA, PLS-DA, orthogonal PLS-DA, and other methods; and these differences were analyzed using non-targeted metabolomics. We found that A549 cells which were treated by MnO2NSs have 17 different metabolites and 9 metabolic pathways that varied markedly. Owing to their unique composition, structure, and physicochemical properties, MnO2NSs and their composites have become a favored type of nanomaterial used for CDT in cancer therapy. This work provides insights into the mechanism underlying the effects of MnO2NSs on the tumor microenvironment of A549 lung cancer cells, effectively making up for the deficiency of the study on cellular mechanism of CDT-induced apoptosis of cancer cells. It could aid the development of cancer CDT treatment strategies and help improve the use of nanomaterials in the clinical field.


Assuntos
Neoplasias Pulmonares , Compostos de Manganês , Humanos , Células A549 , Cromatografia Líquida , Óxidos , Espectrometria de Massas em Tandem , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
17.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762036

RESUMO

Currently, the leaves of the hop plant (Humulus lupulus L.) are an unexploited and still little-investigated agricultural by-product. In our study, with the aim of exploring the metabolome of dried hop leaves (Chinook cultivar), a metabolomic approach was applied using multiple analytical tools such as SPME/GC-MS, GC-MS, PTR-ToF-MS, and NMR to identify the secondary metabolites. The obtained results showed the presence of a high number of components belonging to different chemical classes. In fact, thanks to the multi-methodological approach, volatile organic compounds (VOCs) with low molecular weight, terpenic compounds, fatty acids, sugars, amino acids, organic acids, and alcohols have been detected and identified. Among the revealed terpenes in the untreated matrix, the sesquiterpenes α-humulene, ß-caryophyllene, and α-copaene were the most abundant. Among the saturated and unsaturated fatty acids, palmitic and linolenic acids, respectively, were those with the highest relative percentages. Particularly relevant was the sugar content, where sucrose was the main exponent while glutamate and asparagine were the principal detected amino acids. Conversely, alcohols and organic acids were the least abundant compound classes, and xanthohumol was also identified in the methanolic extract.


Assuntos
Humulus , Metabolômica , Aminoácidos , Metaboloma , Ácido Glutâmico
18.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005361

RESUMO

Although a quadruple mass analyzer and an ion trap mass analyzer have complementary analytical features, they usually have different geometries, operational modes, and electronic control systems. As a continuous effort to extend its coverage, both quadrupole and ion trap operation modes were realized on a "brick" miniature mass spectrometer with a single mass analyzer. In the quadrupole operation mode, low-mass ions ranging from 31 to 502 Th can be analyzed. On the other hand, the ion trap mode can be utilized to cover ions with higher mass to charge ratios (up to 922 Th), as well as performing tandem mass spectrometry. To realize the multiplexing of both operation modes, a printed circuit board (PCB)-based multi-electrode quadrupole-ion trap mass analyzer was designed and integrated in the system. To cover both volatile and non-volatile molecules, two ionization sources were also implemented, including a nano electrospray ionization source and an in-vacuum plasma ionization source. Performances of the instrument operated in these two modes were characterized, such as mass resolution, sensitivity, and mass range. Results demonstrate that the combination of the quadrupole and ion trap operation modes can provide new capabilities when solving analytical problems.

19.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446828

RESUMO

Xanthohumol (XN), a natural prenylated flavonoid extracted and isolated from the hop plant (Humulus lupulus), possesses diverse pharmacological activities. Although the metabolites of XN have been investigated in the previous study, a comprehensive metabolic profile has been insufficient in vivo or in vitro until now. The current study was aimed at systematically elucidating the metabolic pathways of XN after oral administration to rats. Herein, a UHPLC-Q-Exactive Orbitrap MS was adopted for the potential metabolites detection. A stepwise targeted matching strategy for the overall identification of XN metabolites was proposed. A metabolic net (53 metabolites included) on XN in vivo and in vitro, as well as the metabolic profile investigation, were designed, preferably characterizing XN metabolites in rat plasma, urine, liver, liver microsomes, and feces. On the basis of a stepwise targeted matching strategy, the net showed that major in vivo metabolic pathways of XN in rats include glucuronidation, sulfation, methylation, demethylation, hydrogenation, dehydrogenation, hydroxylation, and so on. The proposed metabolic pathways in this research will provide essential data for further pharmaceutical studies of prenylated flavonoids and lay the foundation for further toxicity and safety studies.


Assuntos
Flavonoides , Propiofenonas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Espectrometria de Massas , Propiofenonas/farmacologia
20.
Environ Monit Assess ; 195(5): 554, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041261

RESUMO

Heavy metals have found a large number of applications in the recent times. These heavy metals are being continuously added to our environment through various natural and anthropogenic activities. Industries employ heavy metals to process raw materials into final products. Effluents from these industries carry heavy metals. Atomic absorption spectrophotometer and ICP-MS (inductively coupled plasma-mass spectrometer) are of great help in detecting various elements in the effluent. They have been extensively applied to solve problems related to environmental monitoring and assessment. Heavy metals like Cu, Cd, Ni, Pb, and Cr can be easily detected using both the techniques. Some of these heavy metals are toxic to both humans and animals. They can have significant related health effects. Presence of heavy metals in the industrial effluent has gained varied attention in the recent times and it has become one of the major causes of water and soil pollution. Significant contributions can be linked with the leather tanning industry. As the effluent from the tanning industry has been found to contain a large number of heavy metals in many studies. Continuous monitoring and treatment of the effluent is necessary to keep a check on the concentration of heavy metals in these effluents. This study focuses on the analysis of the various studies available on tannery effluents, methods used for heavy metal analysis, toxicity of these heavy metals, and the related major health effects. Data for heavy metals in the tannery effluent from different studies in last two decades has been collected and analysed. The data from various studies indicates that Cr, Cd, Pb, Zn, Cu, Fe, and Ni are the most commonly found heavy metals released from the tanning industry. Proper management of the tannery effluent is thus very essential for saving the environment.


Assuntos
Cádmio , Metais Pesados , Humanos , Cádmio/análise , Chumbo/análise , Curtume , Monitoramento Ambiental/métodos , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA