Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.078
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38733990

RESUMO

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Assuntos
Bulbo , Medula Espinal , Sistema Nervoso Simpático , Animais , Masculino , Camundongos , Locomoção/fisiologia , Bulbo/fisiologia , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios/fisiologia , Sono REM/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Comportamento Animal , Contagem de Células , Músculo Esquelético
2.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608651

RESUMO

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Assuntos
Movimento , Neurônios , Camundongos , Animais , Movimento/fisiologia , Neurônios/fisiologia , Membro Anterior/fisiologia , Tronco Encefálico
3.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
4.
Proc Natl Acad Sci U S A ; 120(52): e2313997120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109532

RESUMO

The rhombicbrain (rhombencephalon or intermediate sector) is the vertebrate central nervous system part between the forebrain-midbrain (rostral sector) and spinal cord (caudal sector), and it has three main divisions: pons, cerebellum, and medulla. Using a data-driven approach, here we examine intrinsic rhombicbrain (intrarhombicbrain) network architecture that in rat consists of 52,670 possible axonal connections between 230 gray matter regions (115 bilaterally symmetrical pairs). Our analysis indicates that only 8,089 (15.4%) of these connections exist. Multiresolution consensus cluster analysis yields a nested hierarchy model of rhombicbrain subsystems that at the top level are associated with 1) the cerebellum and vestibular nuclei, 2) orofacial-pharyngeal-visceral integration, and 3) auditory connections; the bottom level has 68 clusters, ranging in size from 2 to 11 regions. The model provides a basis for functional hypothesis development and interrogation. More granular network analyses performed on the intrinsic connectivity of individual and combined main rhombicbrain divisions (pons, cerebellum, medulla, pons + cerebellum, and pons + medulla) demonstrate the mutability of network architecture in response to the addition or subtraction of connections. Clear differences between the structure-function network architecture of the rhombicbrain and forebrain-midbrain are discussed, with a stark comparison provided by the subsystem and small-world organization of the cerebellar cortex and cerebral cortex. Future analysis of the connections within and between the forebrain-midbrain and rhombicbrain will provide a model of brain neural network architecture in a mammal.


Assuntos
Cerebelo , Ponte , Ratos , Animais , Prosencéfalo , Sistema Nervoso Central , Mamíferos
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38940832

RESUMO

Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.


Assuntos
Mapeamento Encefálico , Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/fisiologia , Tronco Encefálico/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/métodos , Adulto Jovem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção do Tato/fisiologia , Estimulação Física , Mãos/fisiologia
6.
Immunol Rev ; 302(1): 68-85, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096078

RESUMO

Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self-antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell-based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self-antigens will be highlighted.


Assuntos
Fibroblastos , Linfócitos T , Diferenciação Celular , Células Epiteliais , Ativação Linfocitária , Células Estromais , Timo
7.
J Physiol ; 602(5): 949-966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353989

RESUMO

Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.


Assuntos
Corticosterona , Bulbo , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Bulbo/fisiologia , Neurônios/fisiologia , Estresse Fisiológico
8.
J Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057844

RESUMO

Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.

9.
Pflugers Arch ; 476(1): 123-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37775569

RESUMO

Intracellular Ca2+ ([Ca2+]i) signaling and catecholamine (CA) exocytosis from adrenal chromaffin cells (CCs) differ between mammalian species. These differences partly result from the different contributions of Ca2+-induced Ca2+-release (CICR) from internal stores, which boosts intracellular Ca2+ signals. Transient inhibition of the sarcoendoplasmic reticulum (SERCA) Ca2+ pump with cyclopiazonic acid (CPA) reduces CICR. Recently, Martínez-Ramírez et al. found that CPA had contrasting effects on catecholamine secretion and intracellular Ca2+ signals in mouse and bovine CCs, where it enhanced and inhibited exocytosis, respectively. After CPA withdrawal, exocytosis diminished in mouse CCs and increased in bovine CCs. These differences can be explained if mouse CCs have weak CICR and strong Ca2+ uptake, and the reverse is true for bovine CCs. Surprisingly, CPA slightly reduced the amplitude of Ca2+ signals in both mouse and bovine CCs. Here we examined the effects of CPA on stimulated CA exocytosis and Ca2+ signaling in rat CCs and investigated if it alters differently the responses of CCs from normotensive (WKY) or hypertensive (SHR) rats, which differ in the gain of CICR. Our results demonstrate that CPA application strongly inhibits voltage-gated exocytosis and Ca2+ transients in rat CCs, regardless of strain (SHR or WKY). Thus, despite the greater phylogenetic distance from the most recent common ancestors, suppression of endoplasmic reticulum (ER) Ca2+ uptake through CPA inhibits the CA secretion in rat CCs more similarly to bovine than mouse CCs, unveiling divergent evolutionary relationships in the mechanism of CA exocytosis of CCs between rodents. Agents that inhibit the SERCA pump, such as CPA, suppress catecholamine secretion equally well in WKY and SHR CCs and are not potential therapeutic agents for hypertension. Rat CCs display Ca2+ signals of varying widths. Some even show early and late Ca2+ components. Narrowing the Ca2+ transients by CPA and ryanodine suggests that the late component is mainly due to CICR. Simultaneous recordings of Ca2+ signaling and amperometry in CCs revealed the existence of a robust and predictable correlation between the kinetics of the whole-cell intracellular Ca2+ signal and the rate of exocytosis at the single-cell level.


Assuntos
Células Cromafins , Hipertensão , Ratos , Animais , Bovinos , Camundongos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Catecolaminas , Filogenia , Cálcio/metabolismo , Células Cromafins/metabolismo , Sinalização do Cálcio , Exocitose , Mamíferos/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L698-L712, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591125

RESUMO

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.


Assuntos
Hipóxia , Camundongos Endogâmicos C57BL , Neurônios , Oligodendroglia , Transcriptoma , Animais , Oligodendroglia/metabolismo , Camundongos , Masculino , Hipóxia/metabolismo , Hipóxia/genética , Neurônios/metabolismo , Neurônios/patologia , Tronco Encefálico/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L452-L463, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104318

RESUMO

Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.


Assuntos
Hipóxia , Núcleo de Kölliker-Fuse , Animais , Núcleo de Kölliker-Fuse/metabolismo , Camundongos , Masculino , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Respiração , Neurônios/metabolismo , Neurônios/fisiologia , Hipercapnia/fisiopatologia , Hipercapnia/metabolismo
12.
Neurobiol Dis ; 195: 106493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579913

RESUMO

BACKGROUND: The clinical symptoms of progressive supranuclear palsy (PSP) may be mediated by aberrant dynamic functional network connectivity (dFNC). While earlier research has found altered functional network connections in PSP patients, the majority of those studies have concentrated on static functional connectivity. Nevertheless, in this study, we sought to evaluate the modifications in dynamic characteristics and establish the correlation between these disease-related changes and clinical variables. METHODS: In our study, we conducted a study on 53 PSP patients and 65 normal controls. Initially, we employed a group independent component analysis (ICA) to derive resting-state networks (RSNs), while employing a sliding window correlation approach to produce dFNC matrices. The K-means algorithm was used to cluster these matrices into distinct dynamic states, and then state analysis was subsequently employed to analyze the dFNC and temporal metrics between the two groups. Finally, we made a correlation analysis. RESULTS: PSP patients showed increased connectivity strength between medulla oblongata (MO) and visual network (VN) /cerebellum network (CBN) and decreased connections were found between default mode network (DMN) and VN/CBN, subcortical cortex network (SCN) and CBN. In addition, PSP patients spend less fraction time and shorter dwell time in a diffused state, especially the MO and SCN. Finally, the fraction time and mean dwell time in the distributed connectivity state (state 2) is negatively correlated with duration, bulbar and oculomotor symptoms. DISCUSSION: Our findings were that the altered connectivity was mostly concentrated in the CBN and MO. In addition, PSP patients had different temporal dynamics, which were associated with bulbar and oculomotor symptoms in PSPRS. It suggest that variations in dynamic functional network connectivity properties may represent an essential neurological mechanism in PSP.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
13.
Mol Pain ; 20: 17448069241270295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39054310

RESUMO

The transmission of nociceptive and pruriceptive signals in the spinal cord is greatly influenced by descending modulation from brain areas such as the rostral ventromedial medulla (RVM). Within the RVM three classes of neurons have been discovered which are relevant to spinal pain modulation, the On, Off, and Neutral cells. These neurons were discovered due to their functional response to nociceptive stimulation. On cells are excited, Off cells are inhibited, and Neutral cells have no response to noxious stimulation. Since these neurons are identified by functional response characteristics it has been difficult to molecularly identify them. In the present study, we leverage our ability to perform optotagging within the RVM to determine whether RVM On, Off, and Neutral cells are GABAergic. We found that 27.27% of RVM On cells, 47.37% of RVM Off cells, and 42.6% of RVM Neutral cells were GABAergic. These results demonstrate that RVM On, Off, and Neutral cells represent a heterogeneous population of neurons and provide a reliable technique for the molecular identification of these neurons.


Assuntos
Neurônios GABAérgicos , Bulbo , Bulbo/fisiologia , Bulbo/citologia , Animais , Neurônios GABAérgicos/metabolismo , Masculino , Ratos Sprague-Dawley , Ratos
14.
Kidney Int ; 105(2): 293-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995909

RESUMO

The kidney medulla is a specialized region with important homeostatic functions. It has been implicated in genetic and developmental disorders along with ischemic and drug-induced injuries. Despite its role in kidney function and disease, the medulla's baseline gene expression and epigenomic signatures have not been well described in the adult human kidney. Here we generated and analyzed gene expression (RNA-seq), chromatin accessibility (ATAC-seq), chromatin conformation (Hi-C) and spatial transcriptomic data from the adult human kidney cortex and medulla. Tissue samples were obtained from macroscopically dissected cortex and medulla of tumor-adjacent normal material in nephrectomy specimens from five male patients. We used these carefully annotated specimens to reassign incorrectly labeled samples in the larger public Genotype-Tissue Expression (GTEx) Project, and to extract meaningful medullary gene expression signatures. Using integrated analysis of gene expression, chromatin accessibility and conformation profiles, we found insights into medulla development and function and then validated this by spatial transcriptomics and immunohistochemistry. Thus, our datasets provide a valuable resource for functional annotation of variants from genome-wide association studies and are freely accessible through an epigenome browser portal.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Adulto , Humanos , Masculino , Cromatina , Rim , Transcriptoma
15.
Eur J Neurosci ; 60(5): 4861-4876, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054660

RESUMO

Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.


Assuntos
Eletroacupuntura , Bulbo , Traumatismo por Reperfusão Miocárdica , Neurônios , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Animais , Eletroacupuntura/métodos , Núcleo Hipotalâmico Paraventricular/metabolismo , Bulbo/metabolismo , Bulbo/fisiologia , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Troponina I/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
16.
Eur J Immunol ; 53(6): e2350388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929102

RESUMO

γδT cells are produced in the thymus throughout life and provide immunity at epithelial-rich sites. Unlike conventional αßT cells, γδT-cell development involves intrathymic acquisition of effector function, with priming for either IL17 or IFN-γ production occurring during embryonic or adult life, respectively. How the thymus controls effector-primed γδT-cell generation in adulthood is poorly understood. Here, we distinguished de novo γδT cells from those undergoing thymus recirculation and/or retention using Rag2GFP mice alongside markers of maturation/effector priming including CD24, CD25, CD73, and IFN-γ, the latter by crossing with IFN-γYFP GREAT mice. We categorize newly developing γδT-cells into an ordered sequence where CD25+ CD73- IFN-γYFP- precursors are followed sequentially by CD25- CD73+ IFN-γYFP- intermediates and CD25- CD73+ IFN-γYFP+ effectors. To determine intrathymic requirements controlling this sequence, we examined γδT-cell development in Relb-/- thymus grafts that lack medullary microenvironments. Interestingly, medulla deficiency did not alter CD25+ γδT-cell precursor generation, but significantly impaired development of effector primed stages. This impact on γδT-cell priming was mirrored in plt/plt mice lacking the medullary chemoattractants CCL19 and CCL21, and also Ccl21a-/- but not Ccl19-/- mice. Collectively, we identify the medulla as an important site for effector priming during adult γδT-cell development and demonstrate a specific role for the medullary epithelial product CCL21 in this process.


Assuntos
Interferon gama , Timo , Animais , Camundongos , Diferenciação Celular , Receptores de Antígenos de Linfócitos T gama-delta/genética
17.
Am J Physiol Heart Circ Physiol ; 327(3): H614-H630, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028279

RESUMO

Maternal major depressive disorder with peripartum onset presents health risks to the mother and the developing fetus. Using a rat model of chronic mild stress, we previously reported on the neurodevelopmental impact of maternal perinatal stress on their offspring. This study examined the cardiovascular impact of maternal perinatal stress on their offspring. The cardiovascular impact was assessed in terms of blood pressure and echocardiographic parameters. The results examined by a three-way ANOVA showed a significant association of cardiovascular parameters with maternal perinatal stress and offspring sex and age. Increased blood pressure was observed in adolescent female and adult male offspring of stress-exposed dams. Echocardiography showed an increase in left atrial dimension and a reduction in left ventricular systolic function in adolescent stress-exposed female offspring. Increased interventricular septum thickness at end-diastole and left ventricular diastolic dysfunction were observed in adult stress-exposed male offspring. The underlying mechanisms of cardiovascular impact were examined in stress-exposed adult offspring by assessing the levels of neurotransmitters and their metabolites in the medulla oblongata using high-performance liquid chromatography. A significant decrease in homovanillic acid, a dopamine metabolite and indicator of dopaminergic activity, was observed in adult stress-exposed female offspring. These results suggest a significant sex- and age-dependent impact of maternal stress during the peripartum period on the cardiovascular system in the offspring that extends to adulthood and suggests a multigenerational effect. The presented data urgently need follow-up to confirm their potential clinical and public health relevance.NEW & NOTEWORTHY We demonstrate that maternal perinatal stress is associated with sex- and age-dependent impact on the cardiovascular system in their offspring. The effect was most significant in adolescent female and adult male offspring. Observed changes in hemodynamic parameters and dopaminergic activity of the medulla oblongata are novel results relevant to understanding the cardiovascular impact of maternal perinatal stress on the offspring. The cardiovascular changes observed in adult offspring suggest a potential long-term, multigenerational impact of maternal perinatal stress.


Assuntos
Pressão Sanguínea , Dopamina , Bulbo , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico , Animais , Feminino , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Bulbo/metabolismo , Dopamina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fatores Sexuais , Fatores Etários , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda , Modelos Animais de Doenças
18.
Biochem Biophys Res Commun ; 691: 149331, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039835

RESUMO

Electrical brain stimulation technology is widely used in the clinic to treat brain neurological disorders. However, during treatment, patients may experience side effects such as pain, poor limb coordination, and skin rash. Previous reports have focused on the brilliant chapter on electrical brain stimulation technology and have not paid attention to patients' suffering caused by side effects during treatment. In this study, electrodes were arranged on the medulla oblongata. Pulsed electric fields of different frequencies were used to perform electrical stimulation to study the impact of electric fields on myelinated nerve fibers and reveal the possible microstructural origin of side effects. Transmission electron microscopy was used to analyze and quantify the changes in microstructure. The results illustrated that myelinated nerve fibers underwent atrophy under pulsed electric fields, with the mildest degree of atrophy under high-frequency (400 Hz) electric fields. Myelin sheaths experienced plate separation under pulsed electric fields, and a distinct laminar structure appeared. The microstructure changes may be related to the side effects of clinical electrical stimulation. This study can provide pathological possibilities for exploring the causes of the side effects of electrical stimulation and supply guidance for selecting electrical parameters for clinical electrical stimulation therapy from a distinctive perspective.


Assuntos
Fibras Nervosas Mielinizadas , Dor , Humanos , Estimulação Elétrica/métodos , Bulbo , Atrofia
19.
Biochem Biophys Res Commun ; 710: 149875, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604073

RESUMO

Stress-induced hyperalgesia (SIH) is induced by repeated or chronic exposure to stressful or uncomfortable environments. However, the neural mechanisms involved in the modulatory effects of the periaqueductal gray (PAG) and its associated loops on SIH development hav e not been elucidated. In the present study, we used chronic restraint stress (CRS)-induced hyperalgesia as a SIH model and manipulated neuronal activity via a pharmacogenetic approach to investigate the neural mechanism underlying the effects of descending pain-modulatory pathways on SIH. We found that activation of PAG neurons alleviates CRS-induced hyperalgesia; on the other hand, PAG neurons inhibition facilitates CRS-induced hyperalgesia. Moreover, this modulatory effect is achieved by the neurons which projecting to the rostral ventromedial medulla (RVM). Our data thus reveal the functional role of the PAG-RVM circuit in SIH and provide analgesic targets in the brain for clinical SIH treatment.


Assuntos
Hiperalgesia , Substância Cinzenta Periaquedutal , Ratos , Camundongos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Dor/metabolismo , Neurônios/metabolismo
20.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34387307

RESUMO

During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.


Assuntos
Galinhas/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Ovário/embriologia , Proteínas Repressoras/genética , Animais , Diferenciação Celular , Linhagem da Célula/genética , Embrião de Galinha , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Gônadas/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Ovário/citologia , Ovário/metabolismo , Proteínas Repressoras/metabolismo , Células de Sertoli/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA