Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2309850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225710

RESUMO

Although chemotherapy has the potential to induce tumor immunotherapy via immunogenic cell death (ICD) effects, how to control the intensity of the immune responses still deserves further exploration. Herein, a controllable ultrasound (US)-triggered chemo-immunotherapy nanoagonist is successfully synthesized by utilizing the pH and reactive oxygen species (ROS) dual-responsive PEG-polyphenol to assemble sonosensitizer zinc oxide (ZnO) and doxorubicin (DOX). The PZnO@DOX nanoparticles have an intelligent disassembly to release DOX and zinc ions in acidic pH conditions. Notably, US irradiation generates ROS by sonodynamic therapy and accelerates the drug release process. Interestingly, after the PZnO@DOX+US treatment, the injured cells release double-stranded DNA (dsDNA) from the nucleus and mitochondria into the cytosol. Subsequently, both the dsDNA and zinc ions bind with cyclic GMP-AMP synthase and activate the stimulator of interferon genes (STING) pathway, resulting in the dendritic cell maturation, ultimately promoting DOX-induced ICD effects and antigen-specific T cell immunity. Therefore, chemotherapy-induced immune responses can be modulated by non-invasive control of US.


Assuntos
Doxorrubicina , Morte Celular Imunogênica , Nanopartículas , Óxido de Zinco , Doxorrubicina/farmacologia , Doxorrubicina/química , Morte Celular Imunogênica/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/metabolismo , Humanos , Ondas Ultrassônicas , Camundongos , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , DNA/química , DNA/metabolismo
2.
Chemphyschem ; 25(10): e202300823, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38353297

RESUMO

Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.

3.
Arch Microbiol ; 206(1): 52, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175198

RESUMO

Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.


Assuntos
Nanopartículas Metálicas , Óxidos , Óxidos/farmacologia , Antibacterianos/farmacologia , Prata , Agricultura
4.
J Fluoresc ; 34(1): 465-478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37610703

RESUMO

Cancer is a broad category of disease that can affect virtually any organ or tissue in the body when abnormal cells grow uncontrollably, invade surrounding tissue, and/or spread to other organs. Dabrafenib is indicated for the treatment of adult patients with advanced non-small cell lung cancer. In the present study, two newly developed spectrofluorimetric probes for the detection of the anticancer drug Dabrafenib (DRF) in its authentic and pharmaceutical products using an ecologically synthesized copper oxide nanoparticle (CuONPs) from Salvia officinalis leaf extract and a copper chelate complex are presented. The first system is based on the influence of the particular optical properties of CuONPs on the enhancement of fluorescence detection. The second system, on the other hand, acts through the formation of a copper charge transfer complex. Various spectroscopic and microscopic studies were performed to confirm the environmentally synthesized CuONPs. The fluorescence detections in the two systems were measured at λex 350 and λem of 432 nm. The results showed the linear concentration ranges for the DRF-CuONPs-SDS and DRF-Cu-SDS complexes were determined to be 1.0-500 ng mL- 1 and 1.0-200 ng mL- 1, respectively. FI = 1.8088x + 21.418 (r = 0.9997) and FI = 2.7536x + 163.37 (r = 0.9989) were the regression equations. The lower detection and quantification limits for the aforementioned fluorescent systems were determined to be 0.4 and 0.8 ng mL- 1 and 1.0 ng mL- 1, respectively. The results also showed that intra-day DRF assays using DRF-CuONPs-SDS and DRF-Cu(NO3)2-SDS systems yielded 0.17% and 0.54%, respectively. However, the inter-day assay results for the above systems were 0.27% and 0.65%, respectively. The aforementioned two systems were effectively used in the study of DRF with excellent percent recoveries of 99.66 ± 0.42% and 99.42 ± 0.56%, respectively. Excipients such as magnesium stearate, titanium dioxide, red iron oxide, and silicon dioxide used in pharmaceutical formulations, as well as various common cations, amino acids, and sugars, had no effect on the detection of compound.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Oximas , Salvia officinalis , Humanos , Cobre/química , Espectrometria de Fluorescência , Nanopartículas/química , Dióxido de Silício , Nanopartículas Metálicas/química
5.
J Nanobiotechnology ; 22(1): 21, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183090

RESUMO

Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.


Assuntos
Nanopartículas Metálicas , Periodontite , Óxido de Zinco , Animais , Humanos , Óxidos , Ouro , Nanopartículas Metálicas/uso terapêutico , Periodontite/tratamento farmacológico , Antibacterianos/farmacologia , Mamíferos
6.
J Appl Toxicol ; 44(3): 445-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37828814

RESUMO

In a changing environmental scenario, acid rain can have a significant impact on aquatic ecosystems. Acidification is known to produce corrosion in metals, hence increasing their harmful effects on the environment, organisms and human health. The prevalent use of metallic nanoparticles (NPs) in everyday products raises concerns regarding exposure and nanotoxicity even in these acidified conditions. We thus report on the cytotoxic and genotoxic potential of nickel oxide (NiO-NP) and zinc oxide (ZnO-NP) NPs when suspended in aqueous media in light of pH variations (7.5 and 5). A modified microsuspension method of the Salmonella/microsome assay was adopted, and strains (TA97a, TA98, TA100, TA102) were exposed to NPs (10-1280 µg/plate) with and without a metabolization fraction. The acidic condition favored disaggregation and caused a decrease in NPs size. Mutagenicity was observed in all samples and different strains, with greater DNA base pair substitution damage (TA100 and TA102), but extrinsic conditions (pH) suggest different action mechanisms of NiO-NP and ZnO-NP on genetic content. Mutagenic activity was found to increase upon metabolic activation (TA98, TA100, and TA102) demonstrating the bioactivity of NiO-NP and ZnO-NP in relation to metabolites generated by the mammalian p450 system in vitro. Modifications in the Salmonella assay methodology increased cell exposure time. The observed responses recommend this modified assay as one of the methodologies of choice for nanoecotoxicological evaluation. These findings emphasize the significance of incorporating the environmental context when evaluating the toxicity of metal-based NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Humanos , Ecossistema , Concentração de Íons de Hidrogênio , Mamíferos , Nanopartículas Metálicas/toxicidade , Mutagênicos , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade
7.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339646

RESUMO

Sunset Yellow FCF (SY FCF) is one of the widely used synthetic azo dyes in the food industry whose content has to be controlled for safety reasons. Electrochemical sensors are a promising tool for this type of task. A voltammetric sensor based on a combination of tin and cerium dioxide nanoparticles (SnO2-CeO2 NPs) with surfactants has been developed for SY FCF determination. The synergetic effect of both types of NPs has been confirmed. Surfactants of various natures (sodium lauryl sulfate (SLS), Brij® 35, and hexadecylpyridinium bromide (HDPB)) have been tested as dispersive media. The best effects, i.e., the highest oxidation currents of SY FCF, have been observed in the case of HDPB. The sensor demonstrates a 4.5-fold-higher electroactive surface area and a 38-fold-higher electron transfer rate compared to the bare glassy carbon electrode (GCE). The electrooxidation of SY FCF is an irreversible, two-electron, diffusion-driven process involving proton transfer. In differential pulse mode in Britton-Robinson buffer (BRB) pH 2.0, the sensor gives a linear response to SY FCF from 0.010 to 1.0 µM and from 1.0 to 100 µM with an 8.0 nM detection limit. The absence of an interferent effect from other typical food components and colorants has been shown. The sensor has been tested on soft drinks and validated with the standard chromatographic method.

8.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474648

RESUMO

Currently, the alteration of external factors during crude oil extraction easily disrupts the thermodynamic equilibrium of asphaltene, resulting in the continuous flocculation and deposition of asphaltene molecules in crude oil. This accumulation within the pores of reservoir rocks obstructs the pore throat, hindering the efficient extraction of oil and gas, and consequently, affecting the recovery of oil and gas resources. Therefore, it is crucial to investigate the principles of asphaltene deposition inhibition and the synthesis of asphaltene inhibitors. In recent years, the development of nanotechnology has garnered significant attention due to its unique surface and volume effects. Nanoparticles possess a large specific surface area, high adsorption capacity, and excellent suspension and catalytic abilities, exhibiting unparalleled advantages compared with traditional organic asphaltene inhibitors, such as sodium dodecyl benzene sulfonate and salicylic acid. At present, there are three primary types of nanoparticle inhibitors: metal oxide nanoparticles, organic nanoparticles, and inorganic nonmetal nanoparticles. This paper reviews the recent advancements and application challenges of nanoparticle asphaltene deposition inhibition technology based on the mechanism of asphaltene deposition and nano-inhibitors. The aim was to provide insights for ongoing research in this field and to identify potential future research directions.

9.
Photochem Photobiol Sci ; 22(3): 579-594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434430

RESUMO

A comparison study examines six different metal oxides (CuO, ZnO, Fe3O4, Co3O4, NiO, and α-MnO2) for the degradation of malachite green dye using four distinct processes. These processes are as follows: sonocatalysis (US/metal oxide), sonocatalysis under ultra-violet irradiation (US/metal oxide/UV), sonocatalysis in the presence of hydrogen peroxide (US/metal oxide/H2O2), and a combination of all these processes (US/metal oxide/UV/H2O2). The effective operating parameters, such as the dosage of metal oxide nanoparticles (MONPs), the type of the process, and the metal oxides' efficiency order, were studied. At the same reaction conditions, the sonophotocatalytic is the best process for all six MOsNPs, CuO was the better metal oxide than other MOsNPs, and at the sonocatalysis process, ZnO was the best metal oxide in other processes. It was found that the metal oxide order for sonocatalytic process is CuO > α-MnO2 ≥ ZnO > NiO ≥ Fe3O4 ≥ Co3O4 within 15-45 min. The order of (US/metal oxide/UV) process is ZnO ≥ NiO ≥ α-MnO2 > Fe3O4 ≥ CuO ≥ Co3O4 within 5-40 min. The order of (US/ MOsNPs/ H2O2) process is ZnO ≥ CuO ≥ α-MnO2 ≥ NiO > Co3O4 > Fe3O4 within 5-20 min. The maximum removal efficiency order of the sonophotocatalytic process is ZnO ≥ CuO > α-MnO2 > NiO > Fe3O4 ≥ Co3O4 within 2-8 min. The four processes degradation efficiency was in the order US/MOsNPs ˂ US/MOsNPs/UV ˂ US/MOsNPs/H2O2 ˂ (UV/Ultrasonic/MOsNPs/H2O2). Complete degradation of MG was obtained at 0.05 g/L MONPs and 1 mM of H2O2 using 296 W/L ultrasonic power and 15 W ultra-violet lamp (UV-C) within a reaction time of 8 min according to the MOsNPs type at the same sonophotocatalytic/H2O2 reaction conditions. The US/metal oxide/UV/H2O2 process is inexpensive, highly reusable, and efficient for degrading dyes in colored wastewater.

10.
Environ Res ; 216(Pt 3): 114736, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343713

RESUMO

In welding, there is a potential risk due to metal-oxide nanoparticles (MONPs) exposure of workers. To investigate this possibility, the diameter and number particles concentration of MONPs were evaluated in different biological matrices and in personal air samples collected from 18 stainless-steel welders and 15 unexposed administrative employees engaged in two Italian mechanical engineering Companies. Exhaled breath condensate (EBC) and urine were sampled at pre-shift on 1st day and post-shift on 5th day of the workweek, while plasma and inhalable particulate matter (IPM) at post-shift on 5th day and analysed using the Single Particle Mass Spectrometry (SP-ICP-MS) technique to assess possible exposure to Cr2O3, Mn3O4 and NiO nanoparticles (NPs) in welders. The NPs in IPM at both Companies presented a multi-oxide composition consisting of Cr2O3 (median, 871,574 particles/m3; 70 nm), Mn3O4 (median, 713,481 particles/m3; 92 nm) and NiO (median, 369,324 particles/m3; 55 nm). The EBC of welders at both Companies showed Cr2O3 NPs median concentration significantly higher at post-shift (64,645 particles/mL; 55 nm) than at pre-shift (15,836 particles/mL; 58 nm). Significantly lower Cr2O3 NPs median concentration and size (7762 particles/mL; 44 nm) were observed in plasma compared to EBC of welders. At one Company, NiO NPs median concentration in EBC (22,000 particles/mL; 65 nm) and plasma (8248 particles/mL; 37 nm) were detected only at post-shift. No particles of Cr2O3, Mn3O4 and NiO were detected in urine of welders at both Companies. The combined analyses of biological matrices and air samples were a valid approach to investigate both internal and external exposure of welding workers to MONPs. Overall, results may inform suitable risk assessment and management procedures in welding operations.


Assuntos
Poluentes Ocupacionais do Ar , Nanopartículas , Exposição Ocupacional , Soldagem , Humanos , Aço Inoxidável/análise , Ferreiros , Monitoramento Biológico , Exposição Ocupacional/análise , Óxidos/análise , Soldagem/métodos , Material Particulado/análise , Compostos Orgânicos/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental
11.
J Nanobiotechnology ; 21(1): 87, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915084

RESUMO

Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas , Animais , Camundongos , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imunoterapia/métodos , Células Dendríticas , Vacinas Anticâncer/uso terapêutico
12.
J Nanobiotechnology ; 21(1): 166, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231443

RESUMO

BACKGROUND: The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS: The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION: The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.


Assuntos
Hypocreales , Nanopartículas Metálicas , Trichoderma , Trichoderma/química , Trichoderma/metabolismo , Titânio/farmacologia , Titânio/metabolismo , Nanopartículas Metálicas/toxicidade
13.
Mikrochim Acta ; 190(12): 497, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040934

RESUMO

Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.

14.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895077

RESUMO

In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxidos/química , Substâncias Redutoras , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Extratos Vegetais/química , Solventes , Química Verde/métodos
15.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511241

RESUMO

The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.


Assuntos
Óxidos , Dióxido de Silício , Óxidos/química , Dióxido de Silício/química
16.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838591

RESUMO

The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Nanopartículas Metálicas , Humanos , Antibacterianos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Metais , Óxidos
17.
World J Microbiol Biotechnol ; 39(8): 220, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269437

RESUMO

Nano materials have found developing interest in biogenic approaches in the present times. In this study, metal oxide nanoparticles (NPs) such as cobalt oxide (Co3O4), copper oxide (CuO), nickel oxide (NiO) and zinc oxide (ZnO), were synthesized using a convenient and rapid method. The structural features of synthesized metal oxide NPs were studied using various microscopic and spectroscopic techniques like SEM, TEM, XRD, FTIR and EDX. The characterization results confirmed that the prepared NPs possess highly pure, unique and crystalline geometry with size ranging between 10 and 20 nm. The synthesized nanoparticles were successfully employed for pharmacological applications. Enzyme inhibition potential of NPs was evaluated against the urease and tyrosinase enzymes. The percent inhibition for the urease enzyme was observed as 80 to 90% by using Co3O4, CuO, NiO and ZnO NPs while ZnO NPs were found to have best anti-urease and anti-tyrosinase activities. Moreover, effective inhibition was observed in the case of ZnO NPs at IC50 values of 0.0833 and 0.1732 for urease and tyrosinase enzymes which were comparable to reference drugs thiourea and kojic acid. The lower the IC50 value, higher the free radical scavenging power. Antioxidant activity by DPPH free radical scavenging method was found moderately high for the synthesized metal oxide NPs while best results were obtained for Co3O4 and ZnO NPs as compared to the standard ascorbic acid. Antimicrobial potential was also evaluated via the disc diffusion and well diffusion methods. CuO NPs show a better zone of inhibition at 20 and 27 mm by using both methods. This study proves that the novel metal oxide NPs can compete with the standard materials used in the pharmacological studies nowadays.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxidos/farmacologia , Nanopartículas Metálicas/química , Radicais Livres , Antibacterianos/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
18.
Chemistry ; 28(50): e202201560, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35843887

RESUMO

Surface ligands are essential tools for the stabilization of colloidal nanoparticles (NPs) in solvents. However, knowledge regarding the effects of the ligand shell, especially the ligand length, is insufficient and controversial. Here we demonstrate solution-based experiments on n-alkylphosphonate-capped TiO2 NPs to investigate the effects of ligand length and solution temperature on colloidal stability. A robust ligand-exchange process is achieved that draws free ligands and impurities away from the colloidal solution. In the case of 8 nm anatase NPs in toluene, the dodecylphosphonate ligand provided better colloidal stability than all the other n-alkylphosphonate ligands. In addition, relaxation studies suggested there is kinetic hysteresis in the dispersion/agglomeration transition. The proposed method is applicable to a wide range of surface ligands designed to maximize the colloidal stability of NPs.


Assuntos
Nanopartículas , Organofosfonatos , Ligantes , Temperatura , Titânio
19.
Anal Bioanal Chem ; 414(15): 4409-4425, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234982

RESUMO

Surface functionalization is widely used to control the behavior of nanomaterials for a range of applications. However, methods to accurately quantify surface functional groups and coatings are not yet routinely applied to nanomaterial characterization. We have employed a combination of quantitative NMR (qNMR) and thermogravimetric analysis (TGA) to address this problem for commercial cerium, nickel, and iron oxide nanoparticles (NPs) that have been modified to add functional coatings with (3-aminopropyl)triethoxysilane (APTES), stearic acid, and polyvinylpyrrolidone (PVP). The qNMR method involves quantification of material that is released from the NPs and quantified in the supernatant after removal of NPs. Removal of aminopropylsilanes was accomplished by basic hydrolysis whereas PVP and stearic acid were removed by ligand exchange using sodium hexametaphosphate and pentadecafluorooctanoic acid, respectively. The method accuracy was confirmed by analysis of NPs with a known content of surface groups. Complementary TGA studies were carried out in both air and argon atmosphere with FT-IR of evolved gases in argon to confirm the identity of the functional groups. TGA measurements for some unfunctionalized samples show mass loss due to unidentified components which makes quantification of functional groups in surface-modified samples less reliable. XPS provides information on the presence of surface contaminants and the level of surface hydroxylation for selected samples. Despite the issues associated with accurate quantification using TGA, the TGA estimates agree reasonably well with the qNMR data for samples with high surface loading. This study highlights the issues in analysis of commercial nanomaterials and is an advance towards the development of generally applicable methods for quantifying surface functional groups.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Argônio , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Ecotoxicol Environ Saf ; 243: 113955, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961199

RESUMO

Given the rapid development of nanotechnology, it is crucial to understand the effects of nanoparticles on living organisms. However, it is laborious to perform toxicological tests on a case-by-case basis. Quantitative structure-activity relationship (QSAR) is an effective computational technique because it saves time, costs, and animal sacrifice. Therefore, this review presents general procedures for the construction and application of nano-QSAR models of metal-based and metal-oxide nanoparticles (MBNPs and MONPs). We also provide an overview of available databases and common algorithms. The molecular descriptors and their roles in the toxicological interpretation of MBNPs and MONPs are systematically reviewed and the future of nano-QSAR is discussed. Finally, we address the growing demand for novel nano-specific descriptors, new computational strategies to address the data shortage, in situ data for regulatory concerns, a better understanding of the physicochemical properties of NPs with bioactivity, and, most importantly, the design of nano-QSAR for real-life environmental predictions rather than laboratory simulations.


Assuntos
Nanopartículas Metálicas , Óxidos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Metais/toxicidade , Nanotecnologia , Óxidos/química , Óxidos/toxicidade , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA