Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2203701119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858304

RESUMO

Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress π-π stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of well-defined model oligomers, revealed the polymerization mechanism.

2.
Chemistry ; : e202402338, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073159

RESUMO

Porous organic cobaltocenium-containing particles are scarce in literature but highly interesting for their electrochemical properties and reusability in, for example, catalysis or magnetic systems. In this work, we present a scalable one-pot strategy to introduce tailorable amounts of cobaltocenium on a porous substrate, adjusting the electrochemical switching capability. For this purpose, 3-(triethoxysilyl)propan-1-amine (APTES) and ethynyl cobaltocenium hexafluorophosphate is used as functionalization agents for in-situ catalyst-free hydroamination, followed by silane condensation at the particles' surface. Functionalized particles are characterized by attenuated total reflection infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA), laser scanning confocal microscopy (LSCM), scanning electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), powder X-ray diffraction (PXRD) and cyclic voltammetry (CV) showing excellent control over the degree of functionalization, i.e., the added cobaltocenium reagents. The electrochemical stability and good addressability while preserving the porous structure are shown. By utilizing higher amounts of APTES, the overall cobaltocenium amount can be reduced in favor of additional amine groups, strongly affecting the electrochemical behavior, making this functionalization strategy a good platform for metallopolymer immobilization and tailored functionalization. Additionally, thermal treatment of the synthesized metallopolymer microparticles paves the way to magnetic properties with tailorable microporous architectures for end-of-life and upcycling aspects.

3.
Proc Natl Acad Sci U S A ; 117(52): 32947-32953, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33310905

RESUMO

Electrocatalytic generation of H2 is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2 generation by 50 mA/cm2 at current densities over 100 mA/cm2 compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure-activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.

4.
Angew Chem Int Ed Engl ; 62(32): e202305489, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310692

RESUMO

The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet-visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ -pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.

5.
Small ; 18(33): e2203148, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871499

RESUMO

Metallopolymers combine the property features of both metallic compounds and organic polymers, representing a typical direction for the design of high-performance hybrid materials. Here, a highly adaptive etching method to create pores and cavities in the metallopolymer particles is established. Starting from boronate polymer (BP) and inorganic@BP core-shell particles, porous, hollow, and yolk-shell metallopolymer particles can be fabricated, respectively. By taking advantage of the easy control over composition and pore/cavity structure, these metallopolymer particles provide a universal platform for the fabrication of nitrogen, boron co-doped carbon nanocomposites loaded with metals (M-NBCs). The as-prepared M-NBCs exhibit remarkable catalytic activities toward oxygen evolution reaction and hydrogen evolution reaction. An alkaline overall water splitting cell assembled by using M-NBCs as the anode and cathode can be driven by a single AAA battery. The proposed strategy for the construction of metallopolymer composites may enlighten for the design of complex hybrid nanomaterials.


Assuntos
Nanocompostos , Polímeros , Catálise , Nanocompostos/química , Polímeros/química , Porosidade , Água
6.
Chemistry ; 28(7): e202103744, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878688

RESUMO

Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.

7.
Angew Chem Int Ed Engl ; 61(9): e202115712, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34968004

RESUMO

The study of metallopolymers with controllable helical sense remains in its infancy. We report arabinose-functionalized (Zn-salphen)-based conjugated polymers that display mirror-image circular dichroism spectra for L- and D-sugar sidechains respectively, signifying ordered (helical) coiling of the polymer backbone with opposite screw-sense preferences. The observation of different spectroscopic behavior and Cotton effects for a variety of solvents (in a reversible manner) and temperatures, ascribed to changes in the extent of intrachain (Zn⋅⋅⋅O(salphen) and π-stacking) interactions between Zn-salphen moieties, thus indicate the flexible, responsive and dynamic nature of the folded helical conformation in these systems. An application study signifying that activity can be governed by the structure and helical sense of the polymer is described.

8.
Macromol Rapid Commun ; 42(16): e2100238, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173300

RESUMO

Long-term stability is a key requirement for anion-exchange membranes (AEMs) for alkaline fuel cells and electrolyzers that is yet to be fulfilled. Different cationic chemistries are being exploited to reach such a goal, and metallopolymers present the unique advantage of chemical stability towards strong nucleophiles as compared to organic cations. Yet, the few metallopolymers tested in strongly alkaline conditions or even in fuel cells still degrade. Therefore, fundamental studies can be advantageous in directing future developments towards this goal. Here, a systematic study of the effect of ligand valency is presented, using nickel-based metallopolymers on polynorbornene backbones, functionalized with multidentate pyridine ligands. Metallopolymers using a single ligand type as well as all the possible mixtures are prepared and their relative stability towards aggressive alkaline conditions compared. Metallopolymer in which nickel ions are hexacoordinated with two tridentate ligands demonstrates superior stability. More importantly, by comparing all the metallopolymers' stability, the reason behind such relative stability provides design parameters for novel metallopolymer AEMs.


Assuntos
Níquel , Ânions , Cátions , Ligantes
9.
Molecules ; 26(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924921

RESUMO

Copper complexes have shown great versatility and a wide application range across the natural and life sciences, with a particular promise as organic light-emitting diodes. In this work, four novel heteroleptic Cu(I) complexes were designed in order to allow their integration in advanced materials such as metallopolymers. We herein present the synthesis and the electrochemical and photophysical characterisation of these Cu(I) complexes, in combination with ab initio calculations. The complexes present a bright cyan emission (λem ~ 505 nm) in their solid state, both as powder and as blends in a polymer matrix. The successful synthesis of metallopolymers embedding two of the novel complexes is shown. These copolymers were also found to be luminescent and their photophysical properties were compared to those of their polymer blends. The chemical nature of the polymer backbone contributes significantly to the photoluminescence quantum yield, paving a route for the strategic design of novel luminescent Cu(I)-based polymeric materials.

10.
Angew Chem Int Ed Engl ; 60(3): 1281-1289, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33009693

RESUMO

In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.

11.
Chemistry ; 26(13): 2954-2966, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31899846

RESUMO

The dehydrocoupling of silanes and alcohols mediated by heavier alkaline-earth catalysts, [Ae{N(SiMe3 )2 }2 ⋅(THF)2 ] (I-III) and [Ae{CH(SiMe3 )2 }2 ⋅(THF)2 ], (IV-VI) (Ae=Ca, Sr, Ba) is described. Primary, secondary, and tertiary alcohols were coupled to phenylsilane or diphenylsilane, whereas tertiary silanes are less tolerant towards bulky substrates. Some control over reaction selectivity towards mono-, di-, or tri-substituted silylether products was achieved through alteration of reaction stoichiometry, conditions, and catalyst. The ferrocenyl silylether, FeCp(C5 H4 SiPh(OBn)2 ) (2), was prepared and fully characterized from the ferrocenylsilane, FeCp(C5 H4 SiPhH2 ) (1), and benzyl alcohol using barium catalysis. Stoichiometric experiments suggested a reaction manifold involving the formation of Ae-alkoxide and hydride species, and a series of dimeric Ae-alkoxides [(Ph3 CO)Ae(µ2 -OCPh3 )Ae(THF)] (3 a-c, Ae=Ca, Sr, Ba) were isolated and fully characterized. Mechanistic experiments suggested a complex reaction mechanism involving dimeric or polynuclear active species, whose kinetics are highly dependent on variables such as the identity and concentration of the precatalyst, silane, and alcohol. Turnover frequencies increase on descending Group 2 of the periodic table, with the barium precatalyst III displaying an apparent first-order dependence in both silane and alcohol, and an optimum catalyst loading of 3 mol % Ba, above which activity decreases. With precatalyst III in THF, ferrocene-containing poly- and oligosilylethers with ferrocene pendent to- (P1-P4) or as a constituent (P5, P6) of the main polymer chain were prepared from 1 or Fe(C5 H4 SiPhH2 )2 (4) with diols 1,4-(HOCH2 )2 -(C6 H4 ) and 1,4-(CH(CH3 )OH)2 -(C6 H4 ), respectively. The resultant materials were characterized by NMR spectroscopy, gel permeation chromatography (GPC) and DOSY NMR spectroscopy, with estimated molecular weights in excess of 20,000 Da for P1 and P4. The iron centers display reversible redox behavior and thermal analysis showed P1 and P5 to be promising precursors to magnetic ceramic materials.

12.
Chemistry ; 26(68): 15835-15838, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32734592

RESUMO

Chemical communication between macromolecules was studied by observing the controlled single chain collapse that ensues the exchange of a metal cross-linker between two polymer chains. The rhodium (I) organometallic cross-linker transfer from a low molecular weight collapsed polybutadiene to a larger polymer was followed using size exclusion chromatography. The increased effective molarity in the larger polymer seems to be the driving force for the metal migration. Thus, we demonstrate here a strategy for transferring a molecular signal that induces chain collapse of a polymer chain based on non-covalent interactions, mimicking biological behaviors reminiscent of signal transductions in proteins.


Assuntos
Nanopartículas , Polímeros , Substâncias Macromoleculares/química , Peso Molecular , Nanopartículas/química , Polímeros/química
13.
Chemistry ; 25(4): 1044-1054, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30304580

RESUMO

Polymetallocenes based on ferrocene, and to a lesser extent cobaltocene, have been well-studied, whereas analogous systems based on nickelocene are virtually unexplored. It has been previously shown that poly(nickelocenylpropylene) [Ni(η5 -C5 H4 )2 (CH2 )3 ]n is formed as a mixture of cyclic (6x ) and linear (7) components by the reversible ring-opening polymerisation (ROP) of tricarba[3]nickelocenophane [Ni(η5 -C5 H4 )2 (CH2 )3 ] (5). Herein the generality of this approach to main-chain polynickelocenes is demonstrated and the ROP of tetracarba[4]nickelocenophane [Ni(η5 -C5 H4 )2 (CH2 )4 ] (8), and disila[2]nickelocenophane [Ni(η5 -C5 H4 )2 (SiMe2 )2 ] (12) is described, to yield predominantly insoluble homopolymers poly(nickelocenylbutylene) [Ni(η5 -C5 H4 )2 (CH2 )4 ]n (13) and poly(tetramethyldisilylnickelocene) [Ni(η5 -C5 H4 )2 (SiMe2 )2 ]n (14), respectively. The ROP of 8 and 12 was also found to be reversible at elevated temperature. To access soluble high molar mass materials, copolymerisations of 5, 8, and 12 were performed. Superconducting quantum interference device (SQUID) magnetometry measurements of 13 and 14 indicated that these homopolymers behave as simple paramagnets at temperatures greater than 50 K, with significant antiferromagnetic coupling that is notably larger in carbon-bridged 6x /7 and 13 compared to the disilyl-bridged 14. However, the behaviour of these polynickelocenes deviates substantially from the Curie-Weiss law at low temperatures due to considerable zero-field splitting.

14.
Chemistry ; 25(42): 9851-9855, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31199024

RESUMO

A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.

15.
Macromol Rapid Commun ; 40(17): e1800730, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30537429

RESUMO

A negative-charged, metal-containing cyclomatrix polyphosphazene microsphere (MCPM) is synthesized using the strategy of precipitation polymerization of di-functionalized polyoxometalates (POMs) and hexachlorocyclotriphosphazene. The chemical structure of these MCPMs is well characterized by 13 C MAS NMR and 31 P MAS NMR, as well as FT-IR, electron microscopy, and X-ray photoelectron spectroscopy. The covalent grafting of the rigid POMs clusters into the framework of these microspheres prevents the collapsing of the pores, making these MCPMs porous materials. Taking advantage of the porous structure and the negative charges in the frameworks, these materials show interesting charge-selective adsorption properties, as demonstrated by the selective adsorption of positive-charged dyes in comparison with negative-charged dyes.


Assuntos
Corantes/química , Microesferas , Compostos Organofosforados/química , Polímeros/química , Compostos de Tungstênio/química , Adsorção , Porosidade
16.
Angew Chem Int Ed Engl ; 58(23): 7537-7550, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30628136

RESUMO

Reviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe-2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer-supported [2Fe-2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe-2S] complex, termed single-site [2Fe-2S] metallopolymers, exhibit superior activity for H2 production.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metaloproteínas/metabolismo , Catálise , Domínio Catalítico , Humanos , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Metaloproteínas/química , Oxirredução
17.
Chemistry ; 24(21): 5423-5433, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29210475

RESUMO

Since its identification as an independent topic after the first world war, the chemistry of (bio)polymers and macromolecules rapidly benefited from intense synthetic activities driven by contributors focusing on formulation and structural aspects. Satisfying rationalization and predictions concerning polymer organization, stability, and reactivity were, however, delayed until the late fifties, when physical chemists set the basis of an adapted thermodynamic modeling. The recent emergence of metal-containing (bio)organic polymers (i.e., metallopolymers) thus corresponds to a logical extension of this field with the ultimate goal of combining the rich magnetic and optical properties of open-shell transition metals with the processability and structural variety of polymeric organic scaffolds. Since applications as energy storage materials, drug delivery vectors, shape-memory materials, and photonic devices can be easily envisioned for these materials, the development of metallopolymers is faced with some urgency in producing novel exploitable structures, while the rational control of their formation, organization, and transformation remains elusive. Caught between the sometimes antagonistic requirements of economic efficiency on one side and of scientific pertinence on the other side, the ongoing achievements in the control of the metal loadings of multi-site polymers are highlighted here with some tutorial discussions of luminescent lanthanidopolymers as proof-of-concept.

18.
Chemistry ; 24(40): 10006-10021, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29532972

RESUMO

Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.

19.
Macromol Rapid Commun ; 39(22): e1800501, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30133031

RESUMO

Racemic and enantiopure phosphorescent iridium(III)-silver(I) coordination polymers are reported. The polymers rac-, Λ-, and Δ-IrAg were formed, respectively, by the assembly of the chiral iridium metalloligands rac-, Λ-, and Δ-[Ir(mesppy)2 (qpy)]PF6 (rac-, Λ- and Δ-Ir) where mesppy is 2-phenyl-4-mesitylpyridinato and qpy is 4,4':2',2'':4'',4'''-quaterpyridine, and Ag+ ions through Npy -Ag linear coordination. The polymers have been characterized in MeNO2 solution by 1 H and 1 H DOSY NMR and CD spectroscopies and in the solid-state by scanning electron microscopy (SEM). The crystal structures of the racemic polymer rac-IrAg has been obtained by X-ray diffraction. The polymers rac-, Λ-, and Δ-IrAg exhibited orange/red emission in solution, in films and as crystals, with intensities comparable to those of the corresponding iridium metalloligands rac-, Λ-, and Δ-Ir. The morphology of the enantiopure polymers in the solid-state resembles marigold flower-like nano-porous assemblies while the racemic polymer possesses an irregular morphology formation.


Assuntos
Ouro/química , Irídio/química , Luminescência , Compostos Organometálicos/química , Polímeros/química , Prata/química , Microscopia Eletrônica de Varredura , Conformação Molecular , Compostos Organometálicos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Difração de Raios X
20.
Macromol Rapid Commun ; 39(11): e1800165, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29744937

RESUMO

Emissive organometallic polymers are an important class of functional materials characterized by the combined photoluminescent features of organometallic molecules and the properties of traditional polymers. In this work, the emissive organometallic complex, [CuBr(PPh3 )2 (4-methylpyridine)], is successfully, mechanically ground into a random copolymer built on 4-(diphenylphosphino)styrene (DPVP) and n-butyl acrylate (BA) monomers. The resultant hybrid materials successfully inherit the emissive centers, and are significantly reinforced by the copper complexes as chemical crosslinkers in the polymeric continuum. These organometallic polymers are also proved to have excellent vapoluminescent properties, exhibiting unique responses to many organic solvent vapors, reflecting their rapid loss and recovery of photoluminescence. Mechanically robust and flexible films prepared with these organometallic Cu(I)-polymers are tested as recoverable sensors for hazardous volatile chemical compounds (VOCs) such as toluene, acetone, chloroform, and dichloromethane, and the low limits of detection (LOD) can reach as low as 1 × 10-3 -8 × 10-3 mg L-1 (0.2-3.3 ppmV, parts per million-volume) for various VOCs. This work sheds lights on the design and fabrication of organometallic polymers for advanced applications.


Assuntos
Cobre/química , Polímeros/química , Acetona/análise , Clorofórmio/análise , Complexos de Coordenação/química , Limite de Detecção , Polímeros/síntese química , Espectrofotometria , Tolueno/análise , Raios Ultravioleta , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA