RESUMO
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Camundongos , Metilação de DNA/genética , Fenótipo , Genômica , AlelosRESUMO
Most transposable elements (TEs) in the mouse genome are heavily modified by DNA methylation and repressive histone modifications. However, a subset of TEs exhibit variable methylation levels in genetically identical individuals, and this is associated with epigenetically conferred phenotypic differences, environmental adaptability, and transgenerational epigenetic inheritance. The evolutionary origins and molecular mechanisms underlying interindividual epigenetic variability remain unknown. Using a repertoire of murine variably methylated intracisternal A-particle (VM-IAP) epialleles as a model, we demonstrate that variable DNA methylation states at TEs are highly susceptible to genetic background effects. Taking a classical genetics approach coupled with genome-wide analysis, we harness these effects and identify a cluster of KRAB zinc finger protein (KZFP) genes that modifies VM-IAPs in trans in a sequence-specific manner. Deletion of the cluster results in decreased DNA methylation levels and altered histone modifications at the targeted VM-IAPs. In some cases, these effects are accompanied by dysregulation of neighboring genes. We find that VM-IAPs cluster together phylogenetically and that this is linked to differential KZFP binding, suggestive of an ongoing evolutionary arms race between TEs and this large family of epigenetic regulators. These findings indicate that KZFP divergence and concomitant evolution of DNA binding capabilities are mechanistically linked to methylation variability in mammals, with implications for phenotypic variation and putative paradigms of mammalian epigenetic inheritance.
Assuntos
Metilação de DNA/genética , Mamíferos/genética , Dedos de Zinco , Animais , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Transcrição Gênica , Zigoto/metabolismoRESUMO
BACKGROUND: The heritable multifactorial etiology of human nonsyndromic cleft lip with or without cleft palate (CL ± P) is not understood. CL ± P occurs in 15% of neonates in the homozygous A/WySn mouse strain, with a multifactorial genetic etiology, the clf1 and clf2 variant genes. Clf1 acts as a mutant allele of Wnt9b but its coding sequence is normal. An IAP (intracisternal A particle) retrotransposon inserted near the Wnt9b gene is associated with clf1. METHODS: Transcription of noncoding sequence between the IAP and the Wnt9b gene was examined in A/WySn embryos. The levels of Wnt9b transcript and of an "IAP antisense" transcript initiated in the IAP and extending into the noncoding interval were assayed in A/WySn and C57BL/6J whole embryos or heads across embryonic days 8 to 12. Methylation of the 5' LTR of the IAP was examined in E12 A/WySn embryo heads. RESULTS: Mean Wnt9b transcript levels were lower in A/WySn than in C57BL/6J at all ages examined and lower in CL ± P embryos than in their normal littermates. The "IAP antisense" transcript was found in all A/WySn embryos and was highest in CL ± P embryos. The IAP at Wnt9b was generally unmethylated in CL ± P embryos and approximately 50% methylated in normal littermates. CONCLUSION: The clf1 mutation in A/WySn is a "metastable epiallele", in which stochastic deficiency in some individuals of DNA methylation of a retrotransposon uniquely inserted near the Wnt9b gene allows transcriptional activity of the retrotransposon and interference with transcription from Wnt9b. Methylation of metastable epialleles should be investigated in human nonsyndromic CL ± P.
Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Metilação de DNA/fisiologia , Embrião de Mamíferos/embriologia , Proteínas Wnt/deficiência , Análise de Variância , Animais , Sequência de Bases , Benzotiazóis , Metilação de DNA/genética , Diaminas , Embrião de Mamíferos/ultraestrutura , Genes de Partícula A Intracisternal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Compostos Orgânicos , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNARESUMO
Metastable epialleles (MEs) are genomic regions that are stochastically methylated prior to germ layer specification and exhibit high interindividual but low intra-individual variability across tissues. ME methylation is vulnerable to environmental stressors, including diet. Tobacco smoke (TS) exposure during pregnancy is associated with adverse impacts on fetal health and maternal micronutrient levels as well as altered methylation. Our objective was to determine if maternal smoke exposure impacts methylation at MEs. Consistent with prior studies, we observed reductions in one-carbon pathway micronutrients with gestational TS exposure, including maternal folate (P = 0.02) and vitamins B6 (P = 0.05) and B12 (P = 0.007). We examined putative MEs BOLA3, PAX8, and ZFYVE28 in cord blood specimens from 85 Newborn Epigenetics STudy participants. Gestational TS exposure was associated with elevated DNA methylation at PAX8 (+5.22% average methylation; 95% CI: 0.33% to 10.10%; P = 0.037). In human conceptal kidney tissues, higher PAX8 transcription was associated with lower methylation (R s = 0.55; P = 0.07), suggesting that the methylation levels established at MEs, and their environmentally induced perturbation, may have meaningful, tissue-specific functional consequences. This may be particularly important because PAX8 is implicated in several cancers, including pediatric kidney cancer. Our data are the first to indicate vulnerability of human ME methylation establishment to TS exposure, with a general trend of increasing levels of methylation at these loci. Further investigation is needed to determine how TS exposure-mediated changes in DNA methylation at MEs, and consequent expression levels, might affect smoking-related disease risk.
RESUMO
Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas â¼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
Assuntos
Metilação de DNA , Gêmeos Monozigóticos , Humanos , Gêmeos Monozigóticos/genéticaRESUMO
In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease.
Assuntos
Metilação de DNA , Epigenoma , Criança , Ilhas de CpG , Embrião de Mamíferos , Epigênese Genética , Fertilização , HumanosRESUMO
BACKGROUND: Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. RESULTS: Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. CONCLUSION: Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.
RESUMO
Cleft lip with or without cleft palate (CL/P) is a common human birth defect whose etiologies remain largely unknown. Several studies have demonstrated that periconceptional supplementation of folic acid can reduce risk of CL/P in offspring. In this study, we tested the hypothesis that the preventive effect of folic acid is manifested through epigenetic modifications by determining whether DNA methylation changes are associated with CL/P. To more readily observe the potential effects of maternal folate on the offspring epigenome, we focused on births prior to mandatory dietary folate fortification in the United States (i.e. birth year 1997 or earlier). Genomic DNA methylation levels were assessed from archived newborn bloodspots in a 182-member case-control study using the Illumina® Human Beadchip 450K array. CL/P cases displayed striking epigenome-wide hypomethylation relative to controls: 63% of CpGs interrogated had lower methylation levels in case newborns, a trend which held up in racially stratified sub-groups. 28 CpG sites reached epigenome-wide significance and all were case-hypomethylated. The most significant CL/P-associated differentially methylated region encompassed the VTRNA2-1 gene, which was also hypomethylated in cases (FWER p = 0.014). This region has been previously characterized as a nutritionally-responsive, metastable epiallele and CL/P-associated methylation changes, in general, were greater at or near putative metastable epiallelic regions. Gene Set Enrichment Analysis of CL/P-associated DMRs showed an over-representation of genes involved in palate development such as WNT9B, MIR140 and LHX8. CL/P-associated DNA methylation changes may partly explain the mechanism by which orofacial clefts are responsive to maternal folate levels.
Assuntos
Fenda Labial/genética , Metilação de DNA , Epigenômica/métodos , Ácido Fólico/administração & dosagem , Estudos de Casos e Controles , Fenda Labial/prevenção & controle , Suscetibilidade a Doenças , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Proteínas com Homeodomínio LIM/genética , Masculino , Exposição Materna , MicroRNAs/genética , Fatores de Transcrição/genética , Proteínas Wnt/genéticaRESUMO
The importance of folate during pregnancy was established more than 80 years ago by Lucy Wills' ground-breaking studies of tropical macrocytic anaemia. More recently, it has become apparent that the adverse consequences of inadequate nutrient supply during early developmental may be exacerbated by over-nutrition postnatally. The present paper aims to review recent evidence that maternal methyl donor (notably folate) supply peri-conceptually and during pregnancy has long-term effects on offspring (metabolic) health. In addition, we propose the hypothesis that epigenetic mechanisms, especially DNA methylation, may mediate the effects of these early life nutritional insults. We discuss evidence from a natural experiment in human subjects which provides proof of principle for the hypothesis. We describe an attempt to test this hypothesis using a mouse model in which female C57Bl/6 mice were randomised to low or normal folate diets prior to, and during, pregnancy and lactation. Low maternal folate supply resulted in offspring that were more susceptible to detrimental metabolic effects of a high-fat diet fed from weaning, manifested as increased circulating TAG concentration. Interestingly, this metabolic phenotype in adult offspring occurred without any detectable change in adiposity, suggesting a different aetiological origin from the more commonly reported observation that maternal undernutrition leads to increased offspring adiposity and to symptoms of the Metabolic Syndrome. The widespread prevalence of overweight and obesity and of folate deficiency among women of child-bearing age highlights the possibility that this double nutritional insult may exacerbate the risk of metabolic disease in their offspring.
RESUMO
BACKGROUND: Phenotypic variability among inbred littermates reared in controlled environments remains poorly understood. Metastable epialleles refer to loci that intrinsically behave in this way and a few examples have been described. They display differential methylation in association with differential expression. For example, inbred mice carrying the agouti viable yellow (A (vy) ) allele show a range of coat colours associated with different DNA methylation states at the locus. The availability of next-generation sequencing, in particular whole genome sequencing of bisulphite converted DNA, allows us, for the first time, to search for metastable epialleles at base pair resolution. RESULTS: Using whole genome bisulphite sequencing of DNA from the livers of five mice from the A (vy) colony, we searched for sites at which DNA methylation differed among the mice. A small number of loci, 356, were detected and we call these inter-individual Differentially Methylated Regions, iiDMRs, 55 of which overlap with endogenous retroviral elements (ERVs). Whole genome resequencing of two mice from the colony identified very few differences and these did not occur at or near the iiDMRs. Further work suggested that the majority of ERV iiDMRs are metastable epialleles; the level of methylation was maintained in tissue from other germ layers and the level of mRNA from the neighbouring gene inversely correlated with methylation state. Most iiDMRs that were not overlapping ERV insertions occurred at tissue-specific DMRs and it cannot be ruled out that these are driven by changes in the ratio of cell types in the tissues analysed. CONCLUSIONS: Using the most thorough genome-wide profiling technologies for differentially methylated regions, we find very few intrinsically epigenetically variable regions that we term iiDMRs. The most robust of these are at retroviral elements and appear to be metastable epialleles. The non-ERV iiDMRs cannot be described as metastable epialleles at this stage but provide a novel class of variably methylated elements for further study.
RESUMO
Metastable epialleles (MEs) are mammalian genomic loci where epigenetic patterning occurs before gastrulation in a stochastic fashion leading to systematic interindividual variation within one species. Importantly, periconceptual nutritional influences may modulate the establishment of epigenetic changes, such as DNA methylation at MEs. Based on these characteristics, we exploited Infinium HumanMethylation450 BeadChip kits in a 2-tissue parallel screen on peripheral blood leukocyte and colonic mucosal DNA from 10 children without identifiable large intestinal disease. This approach led to the delineation of 1776 CpG sites meeting our criteria for MEs, which associated with 1013 genes. The list of ME candidates exhibited overlaps with recently identified human genes (including CYP2E1 and MGMT, where methylation has been associated with Parkinson disease and glioblastoma, respectively) in which perinatal DNA methylation levels where linked to maternal periconceptual nutrition. One hundred 18 (11.6%) of the ME candidates overlapped with genes where DNA methylation correlated (r > 0.871; p < 0.055) with expression in the colon mucosa of 5 independent control children. Genes involved in homophilic cell adhesion (including cadherin-associated genes) and developmental processes were significantly overrepresented in association with MEs. Additional filtering of gene expression-correlated MEs defined 35 genes, associated with 2 or more CpG sites within a 10 kb genomic region, fulfilling the ME criteria. DNA methylation changes at a number of these genes have been linked to various forms of human disease, including cancers, such as asthma and acute myeloid leukemia (ALOX12), gastric cancer (EBF3), breast cancer (NAV1), colon cancer and acute lymphoid leukemia (KCNK15), Wilms tumor (protocadherin gene cluster; PCDHAs) and colorectal cancer (TCERG1L), suggesting a potential etiologic role for MEs in tumorigenesis and underscoring the possible developmental origins of these malignancies. The presented compendium of ME candidates may accelerate our understanding of the epigenetic origins of common human disorders.