Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(12): e18444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924205

RESUMO

The development of gemcitabine (GEM) resistance severely limits the treatment efficacy in pancreatic cancer (PC) and increasing evidence highlights the vital roles of circular RNAs (circRNAs) in the tumorigenesis, progression and drug resistance of PC. However, the circRNAs underlying GEM resistance development of PC remains to be clarified. The current research aims to unveil the roles of circ_0036627 in dictating the aggressiveness and GEM sensitivity in PC. We reported the increased expression of circ_0036627 in PC tissues and PC cell lines. Elevated circ_0036627 expression level was correlated with advanced tumour grade and poor overall survival in PC patients. Functional assays and in vivo experiments demonstrated that circ_0036627 overexpression was required for the proliferation, migration invasion and GEM resistance in PC cells. circ_0036627 knockdown suppressed tumour development in vivo. The molecular analysis further showed that circ_0036627 increased S100A16 expression by sponging microRNA-145 (miR-145), a tumour-suppressive miRNA that could significantly attenuate PC cell proliferation, migration, invasion and GEM resistance. Furthermore, our findings suggested that S100A16 acted as an oncogenic factor to promote aggressiveness and GEM resistance in PC cells. In conclusion, the current findings provide new mechanistic insights into PC aggressiveness and GEM resistance, suggesting the critical role of circ_0036627/miR-145/S100A16 axis in PC progression and drug resistance development and offering novel therapeutic targets for PC therapy.


Assuntos
Movimento Celular , Proliferação de Células , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Pancreáticas , RNA Circular , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , RNA Circular/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Masculino , Proteínas S100/genética , Proteínas S100/metabolismo , Camundongos , Feminino , Camundongos Nus , Pessoa de Meia-Idade , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico
2.
J Cell Mol Med ; 28(5): e18070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102848

RESUMO

Cisplatin-based chemotherapy is often used in advanced gastric cancer (GC) treatment, yet resistance to cisplatin may lead to treatment failure. Mechanisms underlying cisplatin resistance remain unclear. Recent evidence highlighted the role of macrophages in cancer chemoresistance. Macrophage-derived exosomes were shown to facilitate intercellular communication. Here, we investigated the cisplatin resistance mechanism based on macrophage-derived exosomes in gastric cancer. Cell growth and apoptosis detection experiments revealed that M2-polarized macrophages increased the resistance of GC cells to cisplatin. qRT-PCR, RNAase R assay, actinomycin D assay and cell nucleo-cytoplasmic separation experiments confirmed the existence of circTEX2 in macrophage cytoplasm, with a higher expression level in M2 macrophages than that in M1 macrophages. Further experiments showed that circTEX2 acted as microRNA sponges for miR-145 and regulated the expression of ATP Binding Cassette Subfamily C Member 1 (ABCC1). Inhibition of the circTEX2/miR-145/ABCC1 axis blocked the cisplatin resistance of gastric cancer induced by M2 macrophages, as evidenced by in vitro and in vivo experiments. In conclusion, our research suggests that the exosomal transfer of M2 macrophage-derived circTEX2 enhances cisplatin resistance in gastric cancer through miR-145/ABCC1. Additionally, communication between macrophages and cancer cells via exosomes may be a promising therapeutic target for the treatment of cisplatin-resistant gastric cancer.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Exossomos , Regulação Neoplásica da Expressão Gênica , Macrófagos , MicroRNAs , Proteínas Associadas à Resistência a Múltiplos Medicamentos , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Circular/genética , Exossomos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Camundongos Nus
3.
J Transl Med ; 22(1): 724, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103885

RESUMO

BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.


Assuntos
Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Camundongos
4.
BMC Cancer ; 24(1): 883, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039505

RESUMO

BACKGROUND: The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS: The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS: It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION: Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Fatores de Transcrição SOX9 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Camundongos , Proliferação de Células/genética , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Células A549 , Ensaios Antitumorais Modelo de Xenoenxerto
5.
FASEB J ; 37(4): e22839, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946075

RESUMO

Nearly half a million women are diagnosed with cervical cancer (CC) each year, with the incidence of CC stabilizing or rising in low-income and middle-income countries. Cancer cells use metabolic reprogramming to meet the needs of rapid proliferation, known as the Warburg effect, but the mechanism of the Warburg effect in CC remains unclear. microRNAs (miRNAs) have a wide range of effects on gene expression and diverse modes of action, and they regulate genes for metabolic reprogramming. Dysregulation of miRNA expression leads to metabolic abnormalities in tumor cells and promotes tumorigenesis and tumor progression. In this study, we found that miR-145 was negatively correlated with metabolic reprogramming-related genes and prevented the proliferation and metastasis of CC cell lines by impeding aerobic glycolysis. A dual-luciferase reporter assay showed that miR-145 can bind to the 3'-untranslated region (3'-UTR) of MYC. Chromatin Immunoprecipitation-quantitative real-time PCR indicated that MYC was involved in the regulation of glycolysis-related genes. In addition, miR-145 mimics significantly suppressed the growth of CC cell xenograft tumor, prolonged the survival time of mice, and dramatically silenced the expression of tumor proliferation marker Ki-67. Therefore, the results suggested that miR-145 affects aerobic glycolysis through MYC, which may be a potential target for the treatment of CC.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células/genética , Glicólise/genética , Regulação Neoplásica da Expressão Gênica
6.
FASEB J ; 37(6): e22936, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37144417

RESUMO

The tumor suppressor p53 has been implicated in the pathogenesis of liver fibrosis. HERC5-mediated posttranslational ISG modification of the p53 protein is critical for controlling its activity. Here, we demonstrated that the expression of HERC5 and ISG15 is highly elevated, whereas p53 is downregulated, in fibrotic liver tissues of mice and transforming growth factor-ß1 (TGF-ß1)-induced LX2 cells. HERC5 siRNA clearly increased the protein expression of p53, but the mRNA expression of p53 was not obviously changed. The inhibition of lincRNA-ROR (ROR) downregulated HERC5 expression and elevated p53 expression in TGF-ß1-stimulated LX-2 cells. Furthermore, the expression of p53 was almost unchanged after TGF-ß1-stimulated LX-2 cells were co-transfected with a ROR-expressing plasmid and HERC5 siRNA. We further confirmed that miR-145 is a target gene of ROR. In addition, we also showed that ROR regulates the HERC5-mediated ISGylation of p53 through mir-145/ZEB2. Together, we propose that ROR/miR-145/ZEB2 might be involved in the course of liver fibrosis by regulating ISGylation of the p53 protein.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética , Cirrose Hepática/metabolismo , Fibrose , RNA Interferente Pequeno , MicroRNAs/genética , Peptídeos e Proteínas de Sinalização Intracelular , Homeobox 2 de Ligação a E-box com Dedos de Zinco
7.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683237

RESUMO

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Assuntos
Fragmentação do DNA , Infertilidade Masculina , MicroRNAs , Proteína 1 Homóloga a MutL , Estresse Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patologia , Estresse Oxidativo/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Antioxidantes/metabolismo
8.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
9.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884718

RESUMO

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Assuntos
Redes Reguladoras de Genes , Cardiopatias Congênitas , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Coração/fisiologia , Miocárdio/metabolismo
10.
J Liposome Res ; : 1-14, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101839

RESUMO

Micro-145 down-regulation is frequently found in breast cancers, indicating its potential as a therapeutic target. The introduction of exogenous miR-145 directly to the tumor sites has been a hurdle due to limited delivery, low bioavailability, and hence lower therapeutic efficacy. Thus, this study aims to synthesize and characterize PEGylated liposome co-loaded with Dox-HCl and miR-145 mimics to investigate its in-vitro anti-proliferative activity against MDA-MB-231 cells. The formulations were developed using a composite central design to optimize nanoparticle size and encapsulation efficiency (EE%) of Dox-HCl and miR-145 mimics. The optimized formulation exhibited the highest desirability function (D = 0.814) and displayed excellent stability over 60 days at 4 °C, maintaining a stable nanoparticle size and zeta potential, with relative EE% of Dox-HCl and miR-145 mimics on the final incubation day 94.97 ± 0.53% and 51.96 ± 2.67%, respectively. The system displayed a higher rate of drug release within 4 h of incubation at an acidic condition. Additionally, the optimized formulation demonstrated a higher toxicity (IC50 = 0.58 µM) against MDA-MB-231 cells than the free Dox- HCl and miR-145 regimen (IC50 = 1.00 µM). Our findings suggest that PEGylated liposome is tunable for effective concurrent delivery of anticancer drugs and therapeutic miRNAs into tumor cells, necessitating further investigation.

11.
Immunopharmacol Immunotoxicol ; 46(2): 229-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194243

RESUMO

BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.


Assuntos
Glicoproteínas , MicroRNAs , Psoríase , Sapogeninas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Proliferação de Células/genética
12.
Int J Neurosci ; : 1-8, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512141

RESUMO

OBJECTIVE: To analyze the significance of serum miR-145 and miR-210 expression levels in the diagnosis of carotid artery stenosis. METHODS: During the same period, 55 healthy individuals who received physical examination in the same hospital were recruited as controls and assigned to a non-stenosis group. Among the included patients, there were 45 cases of mild stenosis, 14 cases of moderate stenosis, and 6 cases of severe stenosis after carotid color Doppler ultrasonography. The expression levels of miR-145 and miR-210 in serum were measured using real-time fluorescence quantitative polymerase chain reaction (qPCR) technology. RESULTS: The expression levels of serum miR-145 and miR-210 in carotid artery stenosis group were significantly lower than those in non-stenosis group (p < 0.001). Multivariate Logistic regression analysis showed that smoking history, diabetes, hypertension and total cholesterol were positively correlated with the occurrence of carotid artery stenosis (p < 0.05). The expression levels of miR-145 and miR-210 were significantly negatively correlated with carotid artery stenosis (p < 0.001). In addition, patients with carotid artery stenosis and low expression levels of miR-145 and miR-210 had a greater risk of cerebral ischemia (p < 0.05). Cox regression analysis showed that the low expression of miR-145 and miR-210 were independent predictors of cerebral ischemic events. ROC analysis confirmed that miR-145 and miR-210 had good diagnostic efficacy in cerebral ischemia (p < 0.001). CONCLUSION: The decreased expression of miR-145 and miR-210 in serum is closely related to the diagnostic significance of carotid artery stenosis, and may be used to predict the occurrence of cerebral ischemic events.

13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673886

RESUMO

Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Cadeias Pesadas de Miosina , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo
14.
Indian J Clin Biochem ; 39(3): 421-428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005871

RESUMO

Inadequate management and control of hyperglycemia predisposes diabetic patients to a wide range of complications. Thus, this opens new windows for exploring and scrutinizing novel candidate biomarkers. This study was designed to scrutinize the relationship between HbA1c, osteocalcin, calcium, phosphorus, and expression levels of miR-143 and miR-145 in individuals with T1DM and explore their correlations and diagnostic potential for T1DM. 120 unrelated participants were included (i.e., 90 participants with type 1 diabetes mellitus and 30 healthy controls) and were allocated into two groups. Participants with T1DM were allocated into three subgroups (i.e., below 1 year, 1-8 years, and over 8 years) based on diabetic duration. Participants with T1DM experienced noticeable HbA1c elevation. However, osteocalcin, phosphorus, and calcium profiles notably declined in participants with diabetes compared with those in healthy controls. Moreover, the expression levels of miR-143 and miR-145 decreased in participants with diabetes with a significant difference between participants with diabetes and healthy controls. Additionally, significant alterations in HbA1c, osteocalcin, phosphorus, and calcium profiles and expression levels of miR-143 and miR-145 were observed with increasing diabetic duration (T1DM > 8 years compared with those with a diabetes duration of less than 1 year). This study suggests that miR-143 and miR-145 are prospective biomarkers of diabetes mellitus, which may help predict the progression of complications.

15.
J Physiol ; 601(22): 5107-5128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078283

RESUMO

Long-term abuse of methamphetamine (MA) can cause lung toxicity. Intercellular communication between macrophages and alveolar epithelial cells (AECs) is critical for maintaining lung homeostasis. Microvesicles (MVs) are an important medium of intercellular communication. However, the mechanism of macrophage MVs (MMVs) in MA-induced chronic lung injury remains unclear. This study aimed to investigate if MA can augment the activity of MMVs and if circ_YTHDF2 is a key factor in MMV-mediated macrophage-AEC communication, and to explore the mechanism of MMV-derived circ_YTHDF2 in MA-induced chronic lung injury. MA elevated peak velocity of the pulmonary artery and pulmonary artery accelerate time, reduced the number of alveolar sacs, thickened the alveolar septum, and accelerated the release of MMVs and the uptake of MMVs by AECs. Circ_YTHDF2 was downregulated in lung and MMVs induced by MA. The immune factors in MMVs were increased by si-circ_YTHDF. Circ_YTHDF2 knockdown in MMVs induced inflammation and remodelling in the internalised AECs by MMVs, which was reversed by circ_YTHDF2 overexpression in MMVs. Circ_YTHDF2 bound specifically to and sponged miRNA-145-5p. Runt-related transcription factor 3 (RUNX3) was identified as potential target of miR-145-5p. RUNX3 targeted zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and EMT of AECs. In vivo, circ_YTHDF2 overexpression-MMVs attenuated MA-induced lung inflammation and remodelling by the circ_YTHDF2-miRNA-145-5p-RUNX3 axis. Therefore, MA abuse can induce pulmonary dysfunction and alveolus injury. The immunoactivity of MMVs is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to communication between macrophages and AECs. Circ_YTHDF2 sponges miR-145-5p targeting RUNX3 to participate in ZEB1-related inflammation and remodelling of AECs. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury. KEY POINTS: Methamphetamine (MA) abuse induces pulmonary dysfunction and alveoli injury. The immunoactivity of macrophage microvesicles (MMVs) is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to MMV-mediated intercellular communication between macrophages and alveolar epithelial cells. Circ_YTHDF2 sponges miR-145-5p targeting runt-related transcription factor 3 (RUNX3) to participate in zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and remodelling. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury.


Assuntos
Lesão Pulmonar , Metanfetamina , MicroRNAs , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Metanfetamina/toxicidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Fator 3 de Transcrição/metabolismo , Inflamação/metabolismo , Macrófagos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Apoptose , Proteínas de Ligação a RNA
16.
J Cell Biochem ; 124(9): 1324-1345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475541

RESUMO

Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.


Assuntos
Carcinoma de Células de Transição , Hidroximetil e Formil Transferases , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/genética , Hidroximetil e Formil Transferases/genética , Proliferação de Células/genética , Ribonucleotídeos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
17.
Am J Physiol Renal Physiol ; 325(1): F121-F133, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167274

RESUMO

Transforming growth factor (TGF)-ß1 contributes to podocyte injury in various glomerular diseases, including diabetic kidney disease, probably at least in part by attenuating the expression of Wilms' tumor 1 (WT1). However, the precise mechanisms remain to be defined. We performed miRNA microarray analysis in a human podocyte cell line cultured with TGF-ß1 to examine the roles of miRNAs in podocyte damage. The microarray analysis identified miR-143-3p as the miRNA with the greatest increase following exposure to TGF-ß1. Quantitative RT-PCR confirmed a significant increase in the miR-143-3p/145-5p cluster in TGF-ß1-supplemented cultured podocytes and demonstrated upregulation of miR-143-3p in the glomeruli of mice with type 2 diabetes. Ectopic expression of miR-143-3p and miR-145-5p suppressed WT1 expression in cultured podocytes. Furthermore, inhibition of Smad or mammalian target of rapamycin signaling each partially reversed the TGF-ß1-induced increase in miR-143-3p/145-5p and decrease in WT1. In conclusion, TGF-ß1 induces expression of miR-143-3p/145-5p in part through Smad and mammalian target of rapamycin pathways, and miR-143-3p/145-5p reduces expression of WT1 in cultured human podocytes. miR-143-3p/145-5p may contribute to TGF-ß1-induced podocyte injury.NEW & NOTEWORTHY This study by miRNA microarray analysis demonstrated that miR-143-3p expression was upregulated in cultured human podocytes following exposure to transforming growth factor (TGF)-ß1. Furthermore, we report that the miR-143/145 cluster contributes to decreased expression of Wilms' tumor 1, which represents a possible mechanism for podocyte injury induced by TGF-ß1. This study is important because it presents a novel mechanism for TGF-ß-associated glomerular diseases, including diabetic kidney disease (DKD), and suggests potential therapeutic strategies targeting miR-143-3p/145-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , MicroRNAs , Podócitos , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , MicroRNAs/metabolismo , Podócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
18.
Lab Invest ; 103(4): 100014, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870293

RESUMO

Although linked to esophageal carcinogenesis, the mechanisms by which cigarette smoke mediates initiation and progression of esophageal adenocarcinomas (EAC) have not been fully elucidated. In this study, immortalized esophageal epithelial cells and EAC cells (EACCs) were cultured with or without cigarette smoke condensate (CSC) under relevant exposure conditions. Endogenous levels of microRNA (miR)-145 and lysyl-likeoxidase 2 (LOXL2) were inversely correlated in EAC lines/tumors compared with that in immortalized cells/normal mucosa. The CSC repressed miR-145 and upregulated LOXL2 in immortalized esophageal epithelial cells and EACCs. Knockdown or constitutive overexpression of miR-145 activated or depleted LOXL2, respectively, which enhanced or reduced proliferation, invasion, and tumorigenicity of EACC, respectively. LOXL2 was identified as a novel target of miR-145 as well as a negative regulator of this miR in EAC lines/Barrett's epithelia. Mechanistically, CSC induced recruitment of SP1 to the LOXL2 promoter; LOXL2 upregulation coincided with LOXL2 enrichment and concomitant reduction of H3K4me3 levels within the promoter of miR143HG (host gene for miR-145). Mithramycin downregulated LOXL2 and restored miR-145 expression in EACC and abrogated LOXL2-mediated repression of miR-145 by CSC. These findings implicate cigarette smoke in the pathogenesis of EAC and demonstrate that oncogenic miR-145-LOXL2 axis dysregulation is potentially druggable for the treatment and possible prevention of these malignancies.


Assuntos
Adenocarcinoma , Fumar Cigarros , Neoplasias Esofágicas , MicroRNAs , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Nicotiana/efeitos adversos , Nicotiana/genética , Nicotiana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Regulação Neoplásica da Expressão Gênica
19.
Neurobiol Dis ; 182: 106129, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068642

RESUMO

BACKGROUND: Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS: We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve repair was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS: miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the repair of neural morphology and neural function. CONCLUSIONS: Our study demonstrated that miR-145a-5p could promote OEC migration by down-regulating the target gene Plexin-A2, and transplantation of miR-145a-5p engineered OECs was beneficial to enhance neural structural and functional recovery in SCI rats.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Imagem de Tensor de Difusão , Traumatismos da Medula Espinal/metabolismo , Bulbo Olfatório/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
20.
J Bioenerg Biomembr ; 55(5): 341-352, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610521

RESUMO

Epigenetic regulation has crucial implications for myocardial fibrosis. It has been reported that autophagy, regulated by miR-145, is implicated in the proliferation and fibrosis of cardiac fibroblasts (CFs). However, how it works during the process remains unclear. This study explored the exact effects of epigenetic regulation of miR-145 expression on autophagy, proliferation, and fibrosis of CFs. To examine the expression levels of myocardial fibrosis markers (α-SMA and collagen I), autophagy-related proteins (LC3I, LC3II, p62), DNMT3A, and miR-145, qRT-PCR and western blot were employed. And the proliferation of CFs was detected by CCK-8 and ErdU. As for the determination of the binding relationship between DNMT3A and miR-145, dual-luciferase assay was conducted. Next, the detection of the methylation level of the pre-miR-145 promoter region was completed by MSP. And the verification of the effect of the DNMT3A/miR-145 axis on myocardial fibrosis was accomplished by constructing mouse myocardial infarction (MI) models based on the ligation of the left anterior descending method. In TGF-ß1-activated CFs, remarkable up-regulation of DNMT3 and considerable down-regulation of miR-145 were observed. And further experiments indicated that DNMT3A was able to down-regulate miR-145 expression by maintaining the hypermethylation level of the pre-miR-145 promoter region. In addition, DNMT3A expression could be directly targeted and negatively modulated by miR-145. Moreover, in vitro cell experiments and mouse MI models demonstrated that DNMT3A overexpression could inhibit autophagy, and promote cell proliferation and fibrosis of CFs. However, this kind of effect could be reversed by miR-145 overexpression. In summary, myocardial fibroblast autophagy can be regulated by bidirectional negative feedback actions of DNMT3A and miR-145, thus affecting myocardial fibrosis. This finding will provide a potential target for the clinical treatment of myocardial fibrosis.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Autofagia , Epigênese Genética , Retroalimentação , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Neoplasias Colorretais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA