Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biol Chem ; 402(2): 207-219, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33544468

RESUMO

This study was designed to illustrate the function and role of PCAT1 in CCA. The relative expression was confirmed by RT-qPCR and western blot. The biological function of PCAT1 was evaluated by CCK8, EdU, colony formation, wound healing, transwell, and subcutaneous tumor formation assays. Protein levels of EMT markers were measured by western blot. The binding relationship was predicted by JASPAR and starBase. The binding of YY1 to PCAT1 promoter was assessed by ChIP and luciferase reporter. The binding capacity between miR-216a-3p and PCAT1 as well as BCL3 was assessed by luciferase reporter and AGO2-RIP assays. In this study, we found that PCAT1 was up-regulated in CCA tissues and cells, and the PCAT1 overexpression was associated with poor prognosis. Moreover, PCAT1 was assessed as an independent risk factor of prognosis for CCA patients. Amplified PCAT1 was found to promote tumor proliferation, migration, invasion and EMT process, whereas PCAT1 knockdown inhibited these malignant phenotypes. Mechanistically, PCAT1 was predominantly localized in the cytoplasm and competitively bound miR-216a-3p to increase BCL3 expression. In addition, PCAT1 was activated by transcription factor YY1. This study revealed that PCAT1 acted as an oncogene in CCA, and the YY1/PCAT1/miR-216a-3p/BCL3 axis exhibited critical functions in CCA progression.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima , Fator de Transcrição YY1/metabolismo , Proteína 3 do Linfoma de Células B/genética , Neoplasias dos Ductos Biliares/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Colangiocarcinoma/patologia , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Fator de Transcrição YY1/genética
2.
J Cell Physiol ; 235(12): 9718-9728, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32401366

RESUMO

The tumor-suppressive role of microRNA-216a-3p (miR-216a-3p) has been evidenced in multiple tumors. Yet, the relevance of miR-216a-3p in cervical cancer remains undermined. The current study was designed to determine the expression and potential function of miR-216a-3p in cervical cancer. Expression of miR-216a-3p was markedly decreased in cervical cancer and functional assays revealed an inhibitory effect of miR-216a-3p on the proliferation, colony formation, and invasion of cervical cancer. Actin-like 6A (ACTL6A) was identified as a target gene of miR-216a-3p. Elevated ACTL6A expression was detected in cervical cancer, and ACTL6A inhibition exhibited a tumor-suppressive effect. ACTL6A inhibition increased yes-associated protein (YAP) phosphorylation and downregulated YAP-mediated transcriptional activity. ACTL6A restoration or YAP reactivation partially abrogated the miR-216a-3p-mediated antitumor effect in cervical cancer cells. Taken together, these data demonstrate that miR-216a-3p acts as a potential tumor-suppressive miRNA in cervical cancer, which exerts its function through inhibition of YAP signaling via targeting ACTL6A.


Assuntos
Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/genética , Actinas/economia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Cromossômicas não Histona/economia , Proteínas de Ligação a DNA/economia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Neoplasias do Colo do Útero/patologia , Proteínas de Sinalização YAP
3.
Biosci Biotechnol Biochem ; 84(10): 2014-2027, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619135

RESUMO

Effect of miR-216a-3p on lung cancer hasn't been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.


Assuntos
Apoptose/genética , Movimento Celular/genética , Proteína Coatomer/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
J Cell Biochem ; 119(2): 1755-1766, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28786533

RESUMO

Colorectal Cancer (CRC) is a most common digestive system malignant tumor. Despite recent advance in CRC treatment, searching for efficient biomarker and individual treatment therapy remains an urgent need. Cyclooxygenase-2 (COX-2) plays a critical role in the development and progression of CRC. In addition, shunting of arachidonic acid metabolism to the 5-lipoxygenase (ALOX5, 5-LO) pathway has also been reported to be implicated in the CRC pathogenesis. Cancer cell viability is promoted by ALOX5 through several mechanisms that are similar to those of COX-2. In recent years, it has been widely recognized that through inhibition of target genes, miRNAs can exert both oncogenic and tumor suppressive functions, depending on circumstances. In the present study, we screened for candidate microRNAs (miRNAs) which were predicted to regulate COX-2 and ALOX5 by online tools. Among the candidate miRNAs, miR-216a-3p expression was down-regulated in CRC tissues and cell lines; a higher miR-216a-3p expression was correlated with longer overall survival in patients with CRC. Moreover, ectopic miR-216a-3p expression significantly suppressed CRC cell proliferation. Using luciferase reporter gene, real-time PCR, and western blot assays, we confirmed the miR-216a-3p regulation of COX-2 and ALOX5 through direct targeting; further verified that miR-216a-3p could inhibit COX-2 and ALOX5 expression in CRC cells, thus to affect CRC cell proliferation. Taken together, miR-216a-3p presents a novel target of CRC treatment; rescuing miR-216a-3p expression in CRC might be a promising strategy for CRC treatment.


Assuntos
Araquidonato 5-Lipoxigenase/genética , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/patologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
5.
J Cancer ; 15(10): 3128-3139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706912

RESUMO

Background: The long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to play a crucial role in the progression of esophageal squamous cell carcinoma (ESCC). The current study aims to explore the deeper molecular mechanisms of SNHG1 in ESCC. Methods: Fifty patients with ESCC were enrolled to assess overall survival. Quantitative real-time PCR was performed to measure the levels of SNHG1, miR-216a-3p, and TMBIM6 in ESCC cells. Functional assessments of SNHG1 on ESCC cells were conducted using CCK-8 assay, flow cytometry, and Transwell assays. Western blot was conducted to detect the protein levels of TMBIM6 and proapoptotic proteins (Calpain and Caspase-12). The interaction among SNHG1, miR-216a-3p, and TMBIM6 was assessed with luciferase reporter assays. Results: Our study revealed that SNHG1 was notably increased in both clinical ESCC samples and cellular lines. Upregulation of SNHG1 in ESCC tissues was indicative of poor overall survival. Functionally, SNHG1 knockdown significantly inhibited the proliferation, migration, and invasion while promoting apoptosis in ESCC cells. Mechanistically, SNHG1 functioned as a competing endogenous RNA by sequestering miR-216a-3p to modulate TMBIM6 levels in ESCC cells. Notably, inhibiting miR-216a-3p or restoring TMBIM6 reversed the inhibitory effect induced by SNHG1 knockdown in ESCC cells. Conclusions: We demonstrate for the first time that SNHG1 may act as a competing endogenous RNA and promote ESCC progression through the miR-216a-3p/TMBIM6 axis. This highlights the potential of SNHG1 as a target for ESCC treatment.

6.
Mol Biotechnol ; 66(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37202649

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most representative subtype of renal cancer, with a highly aggressive phenotype and extremely poor prognosis. Immune escape is one of the main reasons for ccRCC growth and metastasis, in which circular RNAs (circRNAs) play critical roles. Therefore, this research studied circAGAP1-associated mechanisms in immune escape and distant metastasis in ccRCC. circAGAP1/miR-216a-3p/MKNK2 was overexpressed or down-regulated by cell transfection. EdU assay, colony formation assay, scratch assay, Transwell assay, immunoblotting, and flow cytometry were used to evaluate cell proliferation, migration, invasion, EMT, and immune escape, respectively. Dual-luciferase reporting assay and RIP assay were used to evaluate the targeting relationship between circAGAP1/miR-216a-3p/MKNK2. Xenotransplantation in nude mice was used to evaluate the growth of ccRCC tumors in vivo. Here, circAGAP1 high expression was positively correlated with higher histological grade and distant metastasis and was a prognostic indicator for ccRCC. Depleting circAGAP1 effectively hampered the proliferative, invasive, and migratory capacities, EMT, and immune escape of ccRCC cells. Correspondingly, silencing circAGAP1 delayed tumor growth, distant metastasis, and immune escape in vivo. Mechanistically, circAGAP1 sponged the tumor suppressor miR-216a-3p, thereby preventing miR-216a-3p from inhibiting MAPK2. Collectively, our findings demonstrate that circAGAP1 exerts a tumor suppressor function through miR-216a-3p/MKNK2 during the immune escape and distant metastasis in ccRCC, and suggest that circAGAP1 may be a novel prognostic marker and therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Animais , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
7.
Int J Rheum Dis ; 26(4): 699-709, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843205

RESUMO

Dual-specificity phosphatase 5 (DUSP5) is a novel anti-inflammatory modulator in many inflammatory diseases. However, the role of DUSP5 in fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) remains unknown. In this study, we aimed to explore the biological function and regulation of DUSP5 in FLS. We found that lower DUSP5 expression level was detected in collagen-induced arthritis (CIA) and synoviocyte MH7A. Overexpression of DUSP5 markedly decreased the proliferation, migration, and invasion of MH7A, which correlated with suppressing the phosphorylation of extracellular signal-regulated kinase (ERK). Moreover, DUSP5 was identified as a novel target gene of miR-216a-3p, which was upregulated in FLS. Therefore, DUSP5 expression was negatively regulated by miR-216a-3p, and the effect of DUSP5 overexpression on FLS was reversed by miR-216a-3p mimics. Overall, our study demonstrates that DUSP5 is a miR-216a-3p target gene and its anti-inflammatory function in FLS via inactivation of ERK. These results revealed that the miR-216a-3p/DUSP5 pathway may play a crucial role in the malignant behavior of FLS, which may serve as a new target for the treatment of RA.


Assuntos
Artrite Reumatoide , MicroRNAs , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Artrite Reumatoide/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/farmacologia , Células Cultivadas
8.
Mol Med Rep ; 27(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37203400

RESUMO

Oral cancer is one of the leading causes of death worldwide, with a reported 5­year survival rate of ~50% after treatment. The treatment measures for oral cancer are very expensive and affordability is low. Thus, it is necessary to develop more effective therapies to treat oral cancer. A number of studies have found that miRNAs are invasive biomarkers and have therapeutic potential in a variety of cancers. The present study included 30 oral patients and 30 healthy controls. Clinicopathological characteristic and miR­216a­3p/ß­catenin expression level of 30 oral cancer patients were analyzed. In addition, two oral cancer cell lines (HSC­6 and CAL­27) were used for mechanism­of­action study. The expression level of miR­216a­3p was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage. Inhibition of miR­216a­3p potently suppressed cell viability and induced apoptosis of oral cancer cells. It was found that effects of miR­216a­3p on oral cancer were through Wnt3a signaling. It was also found that the expression level of ß­catenin was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage; the effects of miR­216a­3p on oral cancer were through ß­catenin. In conclusion, miR­216a­3p and the Wnt­ß­catenin signaling pathway may be interesting candidates to develop effective therapies for oral cancers.


Assuntos
MicroRNAs , Neoplasias Bucais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/genética , Via de Sinalização Wnt , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
9.
Heliyon ; 8(12): e12342, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582685

RESUMO

Single nucleotide polymorphisms (SNPs) was associated with altering the secondary structure of long non-coding RNA (lncRNA). Increasing reports showed that lnc-LAMC2-1:1 SNP played an important role in cancer development and invasion. This study is to elucidate the molecular function of lnc-LAMC2-1:1 SNP rs2147578 promoting tumor progression in colon adenocarcinoma (COAD). In this study, we found that the lnc-LAMC2-1:1 SNP rs2147578 was upregulated in COAD cell lines. Furthermore, lnc-LAMC2-1:1 SNP rs2147578 promoted colon cancer migration, invasion, and proliferation. Interestingly, lnc-LAMC2-1:1 SNP rs2147578 positively regulated HMGB3 expression via miR-216a-3p in colon cancer cells. Functional enrichment analysis showed that targeting genes of miR-216a-3p were enriched in regulating the pluripotency of stem cells, MAPK signaling pathway, TNF signaling pathway, neurotrophin signaling pathway, relaxin signaling pathway, and FoxO signaling pathway. Tumor Immune Estimation Resource (TIMER) database revealed that there was a significantly positive correlation between HMGB3 expression and the infiltration of CD8+ T cells, B cells, neutrophils, macrophages, and CD4+ T cells. Finally, HMGB3 overexpression was validated in external data. In conclusions, lnc-LAMC2-1:1 SNP rs2147578 was involved in promoting COAD progression by targeting miR-216a-3p/HMGB3, and this study will provide a novel molecular target for COAD.

10.
BMC Mol Cell Biol ; 22(1): 56, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749662

RESUMO

BACKGROUND: Abnormal proliferation and migration of human airway smooth muscle cells (HASMCs) play an important role in the development of childhood asthma. Long non-coding RNAs (lncRNAs) have been demonstrated to participate in HASMC proliferation and migration. We aimed to explore more effects and molecular mechanism of taurine upregulated gene 1 (TUG1) in childhood asthma. RESULTS: TUG1 and SMURF2 were overexpressed and miR-216a-3p was downregulated in childhood asthma patients and PDGF-BB-stimulated HASMCs. TUG1 knockdown attenuated PDGF-BB-triggered proliferation and migration of HASMCs. MiR-216a-3p was targeted by TUG1, and miR-216a-3p suppression counteracted the repressive effects of TUG1 interference on proliferation and migration in PDGF-BB-treated HASMCs. SMURF2 was a downstream target of miR-216a-3p, and SMURF2 upregulation abated the inhibiting effects of miR-216a-3p on migration and proliferation in PDGF-BB-exposed HASMCs. TUG1 sponged miR-216a-3p to positively regulate SMURF2 expression. CONCLUSION: TUG1 downregulation inhibited PDGF-BB-induced HASMC proliferation and migration by regulating miR-216a-3p/SMURF2 axis, offering novel insight into the potential application of TUG1 for childhood asthma treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Becaplermina , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Miócitos de Músculo Liso , RNA Longo não Codificante/genética , Taurina , Ubiquitina-Proteína Ligases/genética
11.
Bioengineered ; 12(2): 11376-11389, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34852712

RESUMO

Recent studies have shown that circular RNA circFLNA is abnormally expressed in a variety of malignant tumors, but its role and mechanism in bladder carcinoma (BCa) are still unclear. The present paper aims to contribute to research on the effects and mechanism of circFLNA on the malignant phenotype of BCa. In this study, the expressions of circFLNA, miR-216a-3p and BTG2 in BCa and BCa cells (EJ, T24, 5637, TCC-SUP) were detected by qRT-PCR. EdU staining, colony formation, Transwell assay, wound healing assays, and sphere formation assay were used to measure the cell proliferation, viability, invasion, migration, and cell stemness of BCa cells after circFLNA overexpression. In addition, the correlation existed between miR-216a-3p and circFLNA or BTG2 was confirmed by Dual-Luciferase Reporter assay and RNA pull-down. Western blot was utilized to determine the expression of BTG2, MMP2, epithelial-mesenchymal transition (EMT)-related proteins (vimentin, E-cadherin) and stem cell-specific proteins (CD34, OCT4, SOX2). Our study confirmed that downregulated circFLNA and BTG2 expression and upregulated miR-216a-3p were found in both BCa tissues and cell lines. Meanwhile, upregulated circFLNA inhibited proliferation, invasion and migration, EMT and stemness of BCa cells. MiR-216a-3p was a target gene of circFLNA and could target BTG2. Further analysis finally demonstrated that circFLNA sponged miR-216a-3p and indirectly promoted BTG2 expression, ultimately regulating proliferation, migration, invasion and EMT of BCa cells. In conclusion, circFLNA inhibits the malignant phenotype of BCa cells and their stemness through miR-216a-3p/BTG2, thus suppressing BCa progression.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Circular/genética , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteínas Supressoras de Tumor/genética
12.
Ann Transl Med ; 9(10): 851, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164485

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common central nervous system degenerative disease in middle-aged and elderly people. Our study aimed to illuminate the relationship and mechanism of long-chain non-coding RNA SNHG1 and miRNA (miR)-216a-3p in PD. METHODS: Human neuroblastoma cell lines were treated with MPP+ to construct a PD model. Real-time fluorescent quantitative PCR was used to detect the cellular expression of SNHG1. Neuronal cell activity and apoptosis were compared before and after SNHG1 knock-down, as was neuronal miR-216a-3p expression. Further, a luciferase reporter gene experiment was performed to verify BAX as the target of miR-216a-3p. Anti-miR-216a-3p and BAX were co-transfected into PD model cells, and neuronal cellular activity and apoptosis were observed. Finally, the potential regulatory network of SNHG1/miR-216a-3p/BAX in PD was investigated. RESULTS: The expression of miR-216a-3p was decreased in the PD model cells, and re-expression reversed the high apoptotic rate and cell vitality inhibition in PD model cells. SNHG1 interacted with miR-216a-3p and negatively regulated its upstream molecules, while miR-216a-3p attenuated the effect of SNHG1 knock-down on neurons. The overexpression of BAX in the PD cell model blocked the damage by miR-216a-3p to neurons. At the same time, SNHG1 acted as a coordinator, mediating the regulation of BAX via miR-216a-3p, thereby affecting the activity and apoptotic rate of neurons in the PD model. CONCLUSIONS: SNHG1 interacts with miR-216a-3p to regulate the expression of BAX. This SNHG1/miR-216a-3p/BAX molecular regulatory network is implicated in the pathogenesis of PD.

13.
J Inflamm Res ; 14: 6157-6171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853524

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease of articular joint damage and elevated synovial hyperplasia. Abnormal proliferation, invasion inflammatory response of rheumatoid fibroblast-like synoviocytes (RA-FLS) play a critical role in RA progression. Mesenchymal stem cell (MSC)-derived exosomal circular RNAs are promising therapeutic manner for disease treatment. This work aimed to decipher the role of exosomal circFBXW7 in RA. METHODS: The expression of circFBXW7, miR-216a-3p, and HDAC4 were detected in clinical RA samples. The RA rat model was established. Isolation and identification of exosomes from MSCs was conducted. The effects of exosomal circFBXW7 on RA was evaluated by qPCR, CCK-8, transwell assays, flow cytometry, Western blotting, ELISA, and immunohistochemical assay. Interaction between miR-216a-3p and circFBXW7 or HDAC4 was determined by luciferase reporter gene assay and RNA pulldown. RESULTS: Exosomal circFBXW7 treatment suppressed proliferation, migration and inflammatory response of RA-FLSs and damage of RA model. CircFBXW7 could directly sponge miR-216a-3p to upregulate the expression of HDAC4. Inhibition of HDAC4 or upregulation of miR-216a-3p abolished the therapeutic function of exosomal circFBXW7. Our data demonstrated that circFBXW7 and HDAC4 were decreased, and miR-216a-3p was elevated in clinical RA sample compared with healthy samples. CONCLUSION: We concluded that MSC-derived exosomal circFBXW7 suppressed proliferation, migration and inflammatory response of RA-FLSs and damage of RA rats via sponging miR-216a-3p and release the activation of HDAC4. These findings may provide a novel therapeutic target for RA.

14.
Aging (Albany NY) ; 12(18): 18192-18208, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-33021963

RESUMO

We investigated MAPK14-dependent resistance to sorafenib in hepatocellular carcinoma (HCC). Bioinformatics analysis and dual luciferase reporter assays in HCC cell lines showed that miR-216a-3p directly binds to the 3'UTR of MAPK14 mRNA and downregulates MAPK14 protein expression. Consequently, miR-216a-3p expression correlates inversely with MAPK14 protein levels in HCC patient tissues. miR-216a-3p overexpression significantly increases the sorafenib sensitivity of HCC cells by suppressing MAPK14 expression and reducing the subsequent activation of the MEK/ERK and ATF2 signaling pathways. The growth of xenograft tumors derived from miR-216a-3p-overexpression HCC cells was significantly diminished in sorafenib-treated Balb/c nude mice compared to controls. High miR-216a-3p levels in HCC tissue samples prior to treatment correlated with a better sorafenib response and favorable prognosis. Our findings thus demonstrate that miR-216a-3p enhances sorafenib sensitivity in HCC cells and tumor tissues by decreasing MAPK14 levels, thereby inhibiting the MAPK14-dependent MEK/ERK and ATF2 signaling.

15.
Transl Cancer Res ; 9(4): 2648-2659, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35117624

RESUMO

BACKGROUND: Lung adenocarcinoma is a non-small cell lung cancer with a high mortality. There is little published data on the role of coatomer protein complex subunit ß (COPB2) in lung adenocarcinoma. The current study aimed to explore the effects of COPB2 on lung adenocarcinoma cells. METHODS: The differential expression of COPB2 in normal cells and lung adenocarcinoma cells was detected by quantitative real time-polymerase chain reaction (qRT-PCR) and Western blotting. Then, cell viability assay, flow cytometry and Transwell experiments were performed to study the effects of COPB2 on cell growth, apoptosis, migration and invasion. MiRNA targeting COPB2 was predicted by TargetScan and validated by luciferase assay, qRT-PCR and Western blotting. The effects of miRNA inhibitor on siCOPB2 were analyzed by rescue experiments. Finally, apoptosis and metastatic marker proteins were detected by Western blotting. RESULTS: COPB2 was high-expressed in lung adenocarcinoma cells. Silencing COPB2 inhibited cell viability and cell metastasis, and significantly increased apoptosis. MiR-216a-3p was predicted to be able to target COBP2. Rescue experiment showed that miR-216a-3p inhibitor promoted cell viability, migration and invasion, and inhibited apoptosis of lung adenocarcinoma cells, partly reversed the effects of siCOPB2. Moreover, Western blotting showed that siCOPB2 up-regulated expressions of cleaved Caspase-3, Caspase-3, BCL2 associated X (Bax), and E-Cadherin, and down-regulated expressions of BCL2 apoptosis regulator (Bcl-2), N-Cadherin, and Vimentin, and the above effects were also partly reversed by miR-216a-3p inhibitor. CONCLUSIONS: High-expressed COPB2 promotes metastasis and inhibits apoptosis of lung adenocarcinoma cells through functioning as a target of miR-216a-3p.

16.
Eur J Pharmacol ; 852: 189-197, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30876979

RESUMO

The bromodomain and extra-terminal domain (BET) protein BRD4 is emerging as a potential target for cancer therapy. However, BRD4 roles in regulating the stemness of gastric cancer cells are unclear. Here, we demonstrated that BRD4 expression was significantly increased in gastric cancer tissues, cell spheroids, and BRD4 knockdown attenuated the stemness of gastric cancer cells characterized as the decrease of stemness markers expression, capacity of cells spheroids formation and ALDH1 activity. Importantly, BRD4 expression was negatively correlated with overall survival, first progression survival and post progression survival of gastric cancer patients. Mechanistic investigations revealed that miR-216a-3p was the most remarkably upregulated miRNA in response to BRD4 knockdown and Wnt/ß-catenin signaling was necessary for BRD4-mediated promotion on the stemness of gastric cancer cells. Additionally, BRD4 directly bound to the promoter and promoted the methylation level of MIR216A promoter, thus decreasing miR-216a-3p level. Notably, Wnt3a was identified as the direct target of miR-216a-3p in gastric cancer cells. Therefore, our results defined a BRD4/miR-216a-3p/Wnt/ß-catenin pathway in regulating the stemness of gastric cancer cells.


Assuntos
MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , Sequência de Bases , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
Biomed Pharmacother ; 112: 108699, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30970511

RESUMO

Limonin has been shown to exert anti-inflammatory effects, however, its roles in tumor progression remain unclear. This work aims to investigate the roles and related mechanism of limonin in the stemness of breast cancer cells. Here, we found that limonin attenuated the stemness of breast cancer cells in a concentration-dependent manner, evident by the decreasing the capacity of cell spheroid formation, expression of stemness markers and ALDH1 activity, whereas had no toxicity on non-tumorigenic cells. Additionally, limonin enhanced adriamycin sensitivity of breast cancer cells and attenuated adriamycin resistance in adriamycin-resistant breast cancer cells. Mechanistically, limonin decreased MIR216A methylation level and thus increased miR-216a-3p expression. Furthermore, miR-216a-3p could directly bind to WNT3A and thus inactivated Wnt/ß-catenin pathway. Therefore, our results indicate that limonin could attenuate the stemness and chemoresistance via inhibiting MIR216A methylation and subsequently suppressing Wnt/ß-catenin pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Limoninas/farmacologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Família Aldeído Desidrogenase 1 , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Isoenzimas/metabolismo , Células MCF-7 , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA