Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38152023

RESUMO

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
2.
J Biol Chem ; 299(12): 105476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981207

RESUMO

Circadian rhythm disruption leads to dysregulation of lipid metabolism, which further drive the occurrence of insulin resistance (IR). Exosomes are natural carrier systems that advantageous for cell communication. In the present study, we aimed to explore whether and how the exosomal microRNAs (miRNAs) in circulation participate in modulating skeletal muscle IR induced by circadian rhythm disruption. In the present study, 24-h constant light (12-h light/12-h light, LL) was used to establish the mouse model of circadian rhythm disruption. Bmal1 interference was used to establish the cell model of circadian rhythm disruption. And in clinical experiments, we chose a relatively large group of rhythm disturbance-shift nurses. We showed that LL-induced circadian rhythm disruption led to increased body weight and visceral fat volume, as well as occurrence of IR in vivo. Furthermore, exosomal miR-22-3p derived from adipocytes in the context of circadian rhythm disruption induced by Bmal1 interference could be uptaken by skeletal muscle cells to promote IR occurrence in vitro. Moreover, miR-22-3p in circulation was positively correlated with the clinical IR-associated factors. Collectively, these data showed that exosomal miR-22-3p in circulation may act as potential biomarker and therapeutic target for skeletal muscle IR, contributing to the prevention of diabetes in the context of rhythm disturbance.


Assuntos
Ritmo Circadiano , Exossomos , Resistência à Insulina , MicroRNAs , Animais , Camundongos , Adipócitos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
3.
Int J Exp Pathol ; 105(2): 52-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38152045

RESUMO

Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.


Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , MicroRNAs , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Células Cultivadas , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Consolidação da Fratura , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int Arch Allergy Immunol ; 185(3): 201-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38071964

RESUMO

INTRODUCTION: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of allergic rhinitis (AR). The current investigation is focused on elucidating the functional impact of a specific lncRNA, FGD5 antisense RNA 1 (FGD5-AS1), on the development and progression of AR through its interaction with miR-223-3p. METHODS: An experimental framework for AR was constructed in both cellular and animal models. Quantitative assessment of FGD5-AS1, miR-223-3p, and COX11 mRNA expression was conducted using real-time quantitative reverse transcription PCR. The expression of inflammatory factors, immunoglobulin E, LTC4, and ECP, was examined using ELISA. Apoptosis in human nasal epithelial cells was assessed by the flow cytometry method. The protein expression of COX11 was examined using Western blotting. Nasal mucosal function was further evaluated by hematoxylin and eosin staining. Furthermore, bioinformatics evaluations, dual-luciferase reporter assays, and a series of experimental procedures unveiled a putative competitive endogenous RNA regulatory mechanism. RESULTS: We found the expression of lncRNA FGD5-AS1 was decreased in AR. In vitro lncRNA FGD5-AS1 attenuated the production of inflammatory cytokines in nasal epithelial cells. Furthermore, elevated FGD5-AS1 expression significantly alleviated AR symptoms by reducing nasal epithelial apoptosis and inflammation. MiR-223-3p was identified as a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of COX11 mRNA. Subsequent experiments confirmed that FGD5-AS1 regulated AR through the miR-223-3p/COX11 axis, thereby inhibiting inflammation. CONCLUSION: The FGD5-AS1/miR-223-3p/COX11 axis plays a pivotal role in the pathogenesis of AR, suggesting that FGD5-AS1 could serve as a potential diagnostic biomarker and therapeutic target for AR.


Assuntos
MicroRNAs , RNA Longo não Codificante , Rinite Alérgica , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inflamação/genética , Rinite Alérgica/genética , RNA Mensageiro , Proliferação de Células , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 43(2): 218-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353991

RESUMO

BACKGROUND: Myocardial cell death is the hallmark of myocardial infarction. In the process of myocardial injury, platelets contribute to the pathogenesis by triggering intense inflammatory responses. Yet, it is still unclear if platelets regulate cardiomyocyte death directly, thereby exacerbating myocardial injury in myocardial infarction. METHODS: We describe a mechanism underlying the correlative association between platelets accumulation and myocardial cell death by using myocardial infarction mouse model and patient specimens. RESULTS: Myocardial infarction induces platelets internalization, resulting in the release of miR-223-3p, a platelet-enriched miRNA. By targeting the ACSL3, miR-223-3p delivered by internalized platelets cause the reduction of stearic acid-phosphatidylcholine in cardiomyocytes. The presence of stearic acid-phosphatidylcholine protects cardiomyocytes against ferroptosis. CONCLUSIONS: Our work reveals a novel mechanism of platelet-mediated myocardial injury, highlighting antiplatelet therapies could potentially represent a multimechanism treatment of myocardial infarction, and implying ferroptosis being considered as novel target for therapeutics.


Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Plaquetas/metabolismo , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Morte Celular , Miócitos Cardíacos/metabolismo
6.
RNA Biol ; 21(1): 31-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38828710

RESUMO

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Gases em Plasma , Pele , MicroRNAs/genética , Animais , Camundongos , Pele/metabolismo , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cicatrização/efeitos dos fármacos , Transdução de Sinais , Sistema Imunitário/metabolismo
7.
BMC Urol ; 24(1): 104, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730434

RESUMO

BACKGROUND: Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS: CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS: CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION: Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , MicroRNAs/genética , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , RNA Circular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Camundongos , Animais , Linhagem Celular Tumoral
8.
BMC Nephrol ; 25(1): 79, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443846

RESUMO

BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.


Assuntos
Injúria Renal Aguda , MicroRNAs , Nefrite , Sepse , Canais de Cátion TRPM , Humanos , Injúria Renal Aguda/genética , Citocinas , Rim , Lipopolissacarídeos/toxicidade , Luciferases , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , RNA Circular/genética , Sepse/genética
9.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125761

RESUMO

MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais
10.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473893

RESUMO

Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.


Assuntos
MicroRNAs , Doenças do Sistema Nervoso , Humanos , Feminino , Masculino , MicroRNAs/genética , Hormônios Esteroides Gonadais
11.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892269

RESUMO

We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages. To determine the mechanism by which exosomal miR-143-3p regulates the interplay between ESCC cells and M2 macrophages, ESCC cell-derived exosomes were co-cultured with macrophages. Serum miR-143-3p and miR-223-3p were elevated during radiotherapy, suggesting resistance to radiation and an unfavorable prognosis for ESCC. Increased levels of both miRNAs independently predicted shorter progression-free survival (p = 0.015). We developed a diagnostic model for ESCC using serum microRNAs, resulting in an area under the curve of 0.751. Radiotherapy enhanced the release of miR-143-3p from ESCC cell-derived exosomes. Immune cell infiltration analysis at the Cancer Genome Atlas (TCGA) database revealed that ESCC cell-derived miR-143-3p triggered M2 macrophage polarization. Mechanistically, miR-143-3p upregulation affected chemokine activity and cytokine signaling pathways. Furthermore, ESCC cell exosomal miR-143-3p could be transferred to macrophages, thereby promoting their polarization. Serum miR-143-3p and miR-223-3p could represent diagnostic and prognostic markers for patients with ESCC undergoing radiotherapy. Unfavorable prognosis could be linked to the increased levels of ESCC cell-derived exosomal miR-143-3p, which might promote tumor progression by interacting with macrophages.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , Regulação Neoplásica da Expressão Gênica , Macrófagos , MicroRNAs , Tolerância a Radiação , MicroRNAs/genética , Humanos , Exossomos/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Macrófagos/metabolismo , Tolerância a Radiação/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Ativação de Macrófagos/genética
12.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125899

RESUMO

Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-ß-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.


Assuntos
Fibrose , MicroRNAs , Infarto do Miocárdio , Líquido Pericárdico , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Masculino , Líquido Pericárdico/metabolismo , Feminino , Miocárdio/metabolismo , Miocárdio/patologia , Pessoa de Meia-Idade , Fibroblastos/metabolismo , Idoso , Fator de Crescimento Transformador beta/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética
13.
Rev Invest Clin ; 76(2): 103-115, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38753591

RESUMO

Background: Ovarian cancer is a fatal gynecologic malignancy. Long non-coding RNA (lncRNA) has been verified to serve as key regulator in ovarian cancer tumorigenesis. Objective: The aim of the study was to study the functions and mechanism of lncRNA PITPNA-AS1 in ovarian cancer cellular process. Methods: Clinical ovarian cancer samples were collected and stored at an academic medical center. Cellular fractionation assays and fluorescence in situ hybridization were conducted to locate PITPNA-AS1 in OC cells. TUNEL staining, colony-forming assays, and Transwell assays were performed for evaluating cell apoptosis as well as proliferative and migratory abilities. Western blot was conducted for quantifying protein levels of epithelialmesenchymal transition markers. The binding relation between genes was verified by RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays. Gene expression levels in ovarian cancer tissues and cells were subjected to RT-qPCR. Results: PITPNA-AS1 level was downregulated in ovarian cancer samples and cells. PITPNA-AS1 overexpression contributed to the accelerated ovarian cancer cell apoptosis and inhibited cell migration, proliferation, and epithelial-mesenchymal transition process. In addition, PITPNA-AS1 interacted with miR-223-3p to regulate RHOB. RHOB knockdown partially counteracted the repressive impact of PITPNA-AS1 on ovarian cancer cell activities. Conclusion: PITPNA-AS1 inhibited ovarian cancer cellular behaviors by targeting miR-223-3p and regulating RHOB.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Regulação para Baixo
14.
Neurobiol Dis ; 184: 106228, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454781

RESUMO

Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.


Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , MicroRNAs , Proteínas Mitocondriais , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas Mitocondriais/metabolismo
15.
Apoptosis ; 28(7-8): 997-1011, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37000316

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cells (hUCMSCs)-derived exosomes carrying microRNAs (miRNAs) have promising therapeutic potential in various disorders, including premature ovarian failure (POF). Previous evidence has revealed the low plasma level of miR-22-3p in POF patients. Nevertheless, exosomal miR-22-3p specific functions underlying POF progression are unclarified. METHODS: A cisplatin induced POF mouse model and in vitro murine ovarian granulosa cell (mOGC) model were established. Exosomes derived from miR-22-3p-overexpressed hUCMSCs (Exos-miR-22-3p) were isolated. CCK-8 assay and flow cytometry were utilized for measuring mOGC cell viability and apoptosis. RT-qPCR and western blotting were utilized for determining RNA and protein levels. The binding ability between exosomal miR-22-3p and Kruppel-like factor 6 (KLF6) was verified using luciferase reporter assay. Hematoxylin-eosin staining, ELISA, and TUNEL staining were performed for examining the alteration of ovarian function in POF mice. RESULTS: Exos-miR-22-3p enhanced mOGC viability and attenuated mOGC apoptosis under cisplatin treatment. miR-22-3p targeted KLF6 in mOGCs. Overexpressing KLF6 reversed the above effects of Exos-miR-22-3p. Exos-miR-22-3p ameliorated cisplatin-triggered ovarian injury in POF mice. Exos-miR-22-3p repressed ATF4-ATF3-CHOP pathway in POF mice and cisplatin-treated mOGCs. CONCLUSION: Exosomal miR-22-3p from hUCMSCs alleviates OGC apoptosis and improves ovarian function in POF mouse models by targeting KLF6 and ATF4-ATF3-CHOP pathway.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Feminino , Humanos , Camundongos , Animais , Insuficiência Ovariana Primária/metabolismo , Cisplatino/farmacologia , Exossomos/genética , Exossomos/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Apoptose , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Células da Granulosa/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/farmacologia , Fator 4 Ativador da Transcrição/metabolismo
16.
Funct Integr Genomics ; 23(4): 342, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991531

RESUMO

Obstructive sleep apnea (OSA) is mainly characterized by chronic intermittent hypoxia (CIH) with multiple brain injuries. Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is considered the most important factor inducing and maintaining inflammation. However, the role of NLRP3 and its underlying mechanism in CIH-elicited neuroinflammation remains unclear. We constructed an OSA-related CIH in vivo model and assessed the rats' cognitive behavior in the Morris water maze. The combination of miR-223-3p and NLRP3 was confirmed by the TargetScan database, double luciferase reporter gene experiment, and RNA immunoprecipitation (RIP) experiment. Western blot and ELISA assay were used to analyze the effects of miR-223-3p targeting NLRP3 on the expression of pyroptotic or inflammatory factors in vivo in CIH rats. Severe cognitive impairment was observed in rats at week 6 post-treatment, with increased inflammatory factors in the blood and hippocampus, heightened NLRP3 expression, and low miR-223-3p levels. And the good binding activity of the two was confirmed by dual luciferase reporter and RIP experiments. Next, we found that silencing NLRP3 or overexpression of miR-223-3p in the CIH model could improve cognitive deficits and reduce the level of proinflammatory factors and pyroptosis factors in rats. Finally, based on silencing NLRP3 or overexpression miR-223-3p, we confirmed that there was a regulatory relationship between miR-223-3p and NLRP3. Our results suggested that the NLRP3/ miR-223-3p axis played a role in attenuating CIH-induced neuroinflammation.


Assuntos
MicroRNAs , Apneia Obstrutiva do Sono , Animais , Ratos , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hipóxia , Luciferases , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , MicroRNAs/genética
17.
Funct Integr Genomics ; 23(3): 281, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620594

RESUMO

Previous studies have demonstrated the tumor-suppressive function of microRNA-22-3p (miR-22-3p) in several cancers, whereas the significance of miR-22-3p in non-small cell lung cancer (NSCLC) remains unclear. In this study, we explored the biological function and molecular mechanism of miR-22-3p in NSCLC cells. First, we assessed the expression of miR-22-3p in NSCLC tissues and cells based on RT-qPCR and TCGA database. Compared with normal lung tissues and cells, miR-22-3p expression was dramatically decreased in lung cancer tissues and cells. miR-22-3p expression was also correlated with lymph node metastasis and tumor size, but not TNM stages. We further explored the in vitro function of miR-22-3p on the migration and epithelial-mesenchymal transition (EMT) of NSCLC cells. The results showed that overexpression of miR-22-3p suppressed the migration and EMT of NSCLC cells, whereas silencing miR-22-3p showed the opposite effect. Luciferase assay demonstrated that RAS-related C3 botulinum toxin substrate 1 (RAC1) was the target gene for miR-22-3p. Mechanistically, we demonstrated that miR-22-3p suppressed the cell migration and EMT via downregulation of RAC1 because the inhibitory effect of miR-22-3p on cell migration and EMT of NSCLC cells was reversed by RAC1 overexpression. Based on these novel data, the miR-22-3p/RAC1 axis may be an alternative target in the therapeutic intervention of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Movimento Celular/genética , MicroRNAs/genética , Proteínas rac1 de Ligação ao GTP/genética
18.
Biochem Biophys Res Commun ; 648: 50-58, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36731227

RESUMO

Diabetic kidney disease (DKD), the most pervasive complication in diabetic patients, has become a major health threat to the aging population. Our previous miRNA profiling identified hsa-miR-223-3p as a dysregulated miRNA in the DKD samples, which may serve as a biomarker for DKD diagnosis. However, the specific mechanism of miR-223-3p in the pathogenesis of DKD remains to be elucidated. In this study, we first verified that miR-223-3p level was significantly decreased in the in vitro cell model and in vivo db/db DKD model, accompanied with endothelial cell damage. Importantly, inhibiting the expression of miR-223-3p exacerbated high-glucose induced damages in Human Umbilical Vein Endothelial Cells (HUVECs) and Human Renal Glomerular Endothelial Cells (HRGECs), while miR-223-3p overexpression showed the opposite effect. We further demonstrated that miR-223-3p associated with IL6T mRNA and attenuated the progression of DKD by suppressing the downstream STAT3 activation, indicative of the implication of miR-223-3p/IL6T/STAT3 axis in the pathogenesis of DKD.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Idoso , Humanos , Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus , Nefropatias Diabéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo
19.
J Transl Med ; 21(1): 171, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869348

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS: In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and ß cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS: Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION: Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hiperglicemia , MicroRNAs , Humanos , Animais , Controle Glicêmico , Peixe-Zebra , Fator A de Crescimento do Endotélio Vascular , Insulina , Glucose
20.
Mol Cell Biochem ; 478(3): 459-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35900666

RESUMO

The aim of this study was to investigate the effect of circSnap47 on heart failure (HF) and its potential mechanisms. Quantitative real-time PCR (qRT-PCR) was performed to detect the mRNA expression levels of circSnap47 and miR-233-3p. The viability and apoptosis of H9C2 cells were assessed using CCK-8 and TUNEL assays. The expressions of interleukin (IL)-6, IL-1ß, IL-18, and tumor necrosis factor-alpha were determined using ELISA and qRT-PCR. In addition, the expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins was analyzed using western blot. Moreover, HF-related circRNAs and miRNAs were predicted via bioinformatics analysis. The relationship between circSnap47 and miR-233-3p was further confirmed using a dual-luciferase reporter gene assay. In HF tissues and H9C2 cells treated with oxygen-glucose deprivation (OGD), circSnap47 was upregulated. Silencing circSnap47 increased cell viability and inhibited apoptosis. Besides, silencing circSnap47 alleviated OGD-induced inflammation in H9C2 cells. Moreover, we found that miR-233-3p was the downstream target gene of circSnap47. Our results also revealed that silencing circSnap47 relieved OGD-induced H9C2 cell damage by inactivating the miR-223-3p/MAPK axis. We confirmed that circSnap47 silencing inhibited HF progression via regulation of miR-223/MAPK axis, which will provide for a new therapeutic direction for the treatment of HF.


Assuntos
Insuficiência Cardíaca , MicroRNAs , RNA Circular , Humanos , Apoptose/genética , Inflamação/genética , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno , Oxigênio/metabolismo , RNA Circular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA