RESUMO
p53, master transcriptional regulator of the genotoxic stress response, controls cell-cycle arrest and apoptosis following DNA damage. Here, we identify a p53-induced lncRNA suicidal PARP-1 cleavage enhancer (SPARCLE) adjacent to miR-34b/c required for p53-mediated apoptosis. SPARCLE is a â¼770-nt, nuclear lncRNA induced 1 day after DNA damage. Despite low expression (<16 copies/cell), SPARCLE deletion increases DNA repair and reduces DNA-damage-induced apoptosis as much as p53 deficiency, while its overexpression restores apoptosis in p53-deficient cells. SPARCLE does not alter gene expression. SPARCLE binds to PARP-1 with nanomolar affinity and causes apoptosis by acting as a caspase-3 cofactor for PARP-1 cleavage, which separates PARP-1's N-terminal (NT) DNA-binding domain from its catalytic domains. NT-PARP-1 inhibits DNA repair. Expressing NT-PARP-1 in SPARCLE-deficient cells increases unrepaired DNA damage and restores apoptosis after DNA damage. Thus, SPARCLE enhances p53-induced apoptosis by promoting PARP-1 cleavage, which interferes with DNA-damage repair.
Assuntos
Apoptose , Caspase 3/metabolismo , Neoplasias Colorretais/enzimologia , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genéticaRESUMO
Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-ß production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-ß induction, prompting a negative feedback regulatory mechanism that represses IFN-ß expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.
Assuntos
Fator de Iniciação 4E em Eucariotos/imunologia , Imunidade Inata , MicroRNAs/imunologia , Biossíntese de Proteínas/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Fator de Iniciação 4E em Eucariotos/genética , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/imunologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Infecções por Vírus de RNA/genética , Vírus de RNA/genéticaRESUMO
Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type Ð in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.
Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genéticaRESUMO
Benign airway stenosis (BAS) means airway stenosis or obstruction that results from a variety of non-malignant factors, including tuberculosis, trauma, benign tumors, etc. In consideration of the currently limited research on microRNAs in BAS, this study aimed to explore the role and mechanism of miR-34c-5p in BAS. The expression of miR-34c-5p in BAS granulation tissues showed a significant down-regulation compared with the normal control group. Moreover, miR-34c-5p mimics suppressed the proliferation and differentiation of human bronchial fibroblasts (HBFs) and the epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBE). Conversely, miR-34c-5p inhibitors aggravated those effects. A dual-luciferase reporter assay confirmed that miR-34c-5p can target MDMX rather than Notch1. The over-expression of MDMX can reverse the inhibiting effect of miR-34c-5p on HBFs proliferation, differentiation and EMT. Furthermore, the expressions of tumor protein (p53) and PTEN were down-regulated following the over-expression of MDMX. In addition, the expressions of PI3K and AKT showed an up-regulation. In conclusion, miR-34c-5p was down-regulated in BAS and may inhibit fibroblast proliferation differentiation and EMT in BAS via the MDMX/p53 signaling axis. These findings expand the understanding of the role of miR-34c-5p and will help develop new treatment strategies for BAS.
Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Constrição Patológica , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-mdm2 , Obstrução das Vias Respiratórias/genética , Obstrução das Vias Respiratórias/patologiaRESUMO
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
RESUMO
Aberration of the gastric mucosal barrier homeostasis circuit is one of the key features linked to the onset of gastric ulcers (GU). This work aimed to inspect the gastroprotective influence of dimethyl fumarate (DMF) on ethanol-induced GU in rats and to decipher the possible mechanisms entailed. Rats were pretreated with either DMF (80 mg/kg) or omeprazole (OMP) (20 mg/kg) by oral gavage for 2 weeks. After 24 h of starvation, ethanol (5 ml/kg, oral) was employed to trigger GU in rats, while carboxymethyl cellulose (CMC) was used as a control. Ethanol notably elevated both macroscopic and microscopic gastric damage. DMF and OMP exhibited similar effects on gastric ulcer healing. DMF intervention led to a substantial improvement in gastric insults. DMF significantly reduced ethanol-triggered gastric lesions, as manifested by decreased gastric secretion, acidity, ulcer surface area percent, reduced leukocyte incursion, and increased mucus percent. DMF upregulated miR-34a-5p expression concomitant with the suppression of high mobility group box1 (HMGB1) and inflammatory responses in gastric mucosal homogenate. DMF improved GU by restoring reduced antioxidant defense mechanisms through the coactivation of nuclear factor erythroid 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), and sirtuin1 (SIRT1), indicating the protective role of the PPARγ/SIRT1/Nrf2 pathway. Intriguingly, DMF mitigated apoptosis in ethanol-elicited GU. Taken together, this research implies the potential for the repurposing of DMF as an innovative gastroprotective medication to reestablish the balance of the gastric mucosal barrier via the attenuation of gastric inflammation, oxidative stress, and apoptosis.
Assuntos
Fumarato de Dimetilo , Etanol , Proteína HMGB1 , MicroRNAs , Fator 2 Relacionado a NF-E2 , PPAR gama , Sirtuína 1 , Úlcera Gástrica , Receptor 4 Toll-Like , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Etanol/toxicidade , Etanol/efeitos adversos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Ratos , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos WistarRESUMO
To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.
Assuntos
Apoptose , Células Epiteliais , MicroRNAs , Mitocôndrias , NF-kappa B , Glândulas Salivares , Transdução de Sinais , Síndrome de Sjogren , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Feminino , Linhagem Celular , Masculino , Pessoa de Meia-IdadeRESUMO
Chronic alcohol consumption is a major risk factor for alcoholic steatohepatitis (ASH). Previous studies have shown that direct injury of hepatocytes is the key factor in its occurrence and development. However, our study shows that the role of Kupffer cells in ASH cannot be ignored. We isolated Kupffer cells from the livers of ASH mice and found that alcohol consumption induced Kupffer cell pyroptosis and increased the release of interleukin-1ß (IL-1ß). Furthermore, we screened the related m6A enzyme methyltransferase-like 3 (METTL3) from liver Kupffer cells, and found that silencing METTL3 alleviated inflammatory cytokine eruption by Kupffer cell pyroptosis in ASH mice. In vitro, we silenced METTL3 with lentivirus in BMDMs and RAW264.7 cells and confirmed that METTL3 could reduce pyroptosis by influencing the splicing of pri-miR-34A. Together, our results revealed a critical role of KC pyroptosis in ASH and highlighted the mechanism by which METLL3 relieves cell pyroptosis, which could be a promising therapeutic strategy for ASH.
Assuntos
Fígado Gorduroso Alcoólico , MicroRNAs , Animais , Camundongos , Células de Kupffer , Piroptose , Hepatócitos , MetiltransferasesRESUMO
Adverse effects of ionizing radiation on normal tissues limit the radiation dose in cancer treatment, thereby compromising treatment efficiency. Among the consistently affected non-cancer cells, peripheral blood mononuclear cells (PBMCs) exhibit high radiosensitivity and have the potential to induce systemic effects. PBMC-released extracellular vesicles (EVs), contribute to the communication of such systemic effects. This study aimed to investigate the effects of ionizing radiation on EVs as part of the systemic response of PBMCs in terms of microRNA cargo and biological functions.Therefore, whole blood samples from healthy donors were irradiated ex-vivo (0 Gy, 1 Gy, 2 Gy, 4 Gy) and EVs from PBMCs were isolated after 96 h by PEG precipitation or ultracentrifugation. Candidate microRNAs were examined in PBMC-derived EVs from individual donors. The uptake of membrane-stained fluorescent EVs by different recipient cells was quantified by fluorescence-activated cell sorting analysis. The biological effects of increased miR-34a-5p and of total EVs on recipient cells were assessed.Irradiation of PBMCs induced a dose-dependent upregulation of miR-34a-5p within EVs and PBMCs. However, interindividual differences between donors were noticed in the extent of upregulation, and small EVs displayed more pronounced changes in microRNA levels in comparison to large EVs. Irradiation in presence of the small molecule inhibitor KU-60019 demonstrated that this upregulation is dependent on ATM (Ataxia telangiectasia mutated) activation. Moreover, fibroblasts and keratinocytes were identified as preferred EV recipients. Increased miR-34a-5p levels led to a significant reduction in viability and induction of senescence in keratinocytes but not in fibroblasts, indicating a cell type-specific response.In conclusion, this study further elucidated the complex cellular response of normal tissue after radiation exposure. It confirmed radiation-induced modifications of microRNA expression levels in EVs from PBMCs and identified a robust upregulation of miR-34a-5p in the small EV subfraction, suggesting this microRNA as a potential novel candidate for the development of biomarkers for radiation exposure. Moreover, the different uptake efficiencies observed among specific cell types suggested that EVs induce cell type-specific responses in the intercellular communication of systemic radiation effects.
Assuntos
Biomarcadores , Vesículas Extracelulares , Leucócitos Mononucleares , MicroRNAs , Radiação Ionizante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos da radiação , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Biomarcadores/metabolismo , Masculino , AdultoRESUMO
INTRODUCTION: Ischemic stroke (IS) is a global health concern, often tied to dyslipidemia and vascular endothelial dysfunction. MicroRNA-34a (miR-34a) was reported to be up-regulated in the blood samples of patients with IS, but the specific role of miR-34a and methylenetetrahydrofolate reductase (MTHFR) in IS remains to be elucidated. METHODS: We studied 143 subjects: 71 IS patients, and 72 healthy controls. Human umbilical vein endothelial cells (HUVECs) were cultured and transfected with a miR-34a mimic, inhibitor, or negative control. The miR-34a expression in serum and HUVECs was quantified via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Viability and apoptosis of HUVECs were assessed using CCK-8 assay and flow cytometry. The expression levels of bcl-2, bax, cyt-c, cleaved caspase 3, MTHFR, and homocysteine were measured by Western blot or enzyme-linked immunosorbent assay (ELISA). The relationship between miR-34a and MTHFR was verified by luciferase reporter assay. The levels of MTHFR and homocysteine in serum were examined by ELISA. RESULTS: MiR-34a expression was increased in IS patients and inhibited viability of HUVECs while promoting their apoptosis. Overexpression of miR-34a up-regulated pro-apoptotic proteins (bax, cyt-c and cleaved caspase 3) and down-regulated anti-apoptotic protein bcl-2 in HUVECs. MTHFR was identified as the downstream target of miR-34a and its expression was reduced by miR-34a overexpression, while homocysteine levels increased. Consistently, MTHFR levels were lower and homocysteine levels were higher in IS patients compared with controls. DISCUSSION: Our results suggest that up-regulated miR-34a plays a role in the pathogenesis of IS, potentially through inhibiting MTHFR expression and increasing homocysteine in endothelial cells. Therefore, miR-34a might be a therapeutic target for IS.
Assuntos
Apoptose , Sobrevivência Celular , Homocisteína , AVC Isquêmico , Metilenotetra-Hidrofolato Redutase (NADPH2) , MicroRNAs , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Homocisteína/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/sangue , AVC Isquêmico/patologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , MicroRNAs/metabolismo , MicroRNAs/genéticaRESUMO
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão GênicaRESUMO
Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.
Assuntos
Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Fibronectinas , MicroRNAs , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Fibronectinas/genética , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , GlicoproteínasRESUMO
α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.
Assuntos
Proteína Forkhead Box O3/metabolismo , Cirrose Hepática , MAP Quinase Quinase 4/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , MicroRNAs/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismoRESUMO
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder affecting white and gray matter. This study aimed to investigate the association between clinical outcomes in MS patients and the levels of certain molecules in their serum, including ACTH, IL-17, and specific miRNAs: miR-26a, miR-34a, miR-155-5p, and miR-146a. Fifty healthy people and 75 blood samples from MS patients were selected. MS patients had higher expression levels of IL-17, miR-26a, miR-34a, and miR-146a compared to healthy individuals (p < 0.0001). There was no significant difference in miR-155-5p expression between the two groups (p = 0.203). MS patients also had higher serum levels of ACTH compared to the normal population (p < 0.0001). In MS patients, there was a negative correlation between IL-17 and miR-155-5p expression levels (p = 0.048, r = - 0.229). Similarly, a significant negative correlation was observed between ACTH and miR-155-5p in the control group (p = 0.044, r = - 0.286). The study's analysis revealed no significant difference in the expression of miR-155-5p between MS patients and normal individuals; the study's examination revealed that the expression level of IL-17, miR-26a, miR-34a, and miR-146a was higher in MS patients than in normal individuals.
RESUMO
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
RESUMO
The aging process is linked to numerous cellular changes, among which are modifications in the functionality of dermal fibroblasts. These fibroblasts play a crucial role in sustaining the healing of skin wounds. Reduced cell proliferation is a hallmark feature of aged dermal fibroblasts. Long intergenic non-coding RNA (lincRNAs), such as LincRNA-EPS (Erythroid ProSurvival), has been implicated in various cellular processes. However, its role in aged dermal fibroblasts and its impact on the cell cycle and its regulator, Cyclin D1 (CCND1), remains unclear. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of LincRNA-EPS was achieved through plasmid transfection. Cell proliferation was detected using the MTT assay. Real-time PCR was used to quantify relative gene expressions. Our findings indicate a noteworthy decline in the expression of LincRNA-EPS in aged dermal fibroblasts, accompanied by reduced levels of CCND1 and diminished cell proliferation in these aging cells. Significantly, the overexpression of LincRNA-EPS in aged dermal fibroblasts resulted in an upregulation of CCND1 expression and a substantial increase in cell proliferation. Mechanistically, LincRNA-EPS induces CCND1 expression by sequestering miR-34a, which was dysregulated in aged dermal fibroblasts, and directly targeting CCND1. These outcomes underscore the crucial role of LincRNA-EPS in regulating CCND1 and promoting cell proliferation in aged dermal fibroblasts. Our study provides novel insights into the molecular mechanisms underlying age-related changes in dermal fibroblasts and their implications for skin wound healing. The significant reduction in LincRNA-EPS expression in aged dermal fibroblasts and its ability to induce CCND1 expression and enhance cell proliferation highlight its potential as a therapeutic target for addressing age-related skin wound healing.
Assuntos
Proliferação de Células , Ciclina D1 , Fibroblastos , RNA Longo não Codificante , Ciclina D1/metabolismo , Ciclina D1/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Pele/metabolismo , Pele/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Cultivadas , Envelhecimento da Pele/genética , Derme/citologia , Derme/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica , Cicatrização/genética , Envelhecimento/genéticaRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.
Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Ganciclovir/farmacologia , MicroRNAs/genética , Sarcoma de Kaposi/genéticaRESUMO
The current study aims to evaluate the levels of miR-34a, RASSF1A, and E-cadherin in relation to the levels of isoform B of progesterone receptor (PRB) in endometrioid carcinoma (EC) and atypical hyperplasia (AEH) and their association with clinicopathological parameters. 105 cases (35 EC, 35 AEH, and 35 control) were involved in this study. Cases of AEH received treatment, and other samples were obtained after 6 months to assess the response. E-cadherin and PRB were assessed by immunohistochemistry (IHC), RASSFA methylation by MSP-PCR, and its serum level by ELISA and miR-34a via quantitative PCR. The expressions of miR-34a, RASSF1A, E-cadherin, and PRB differ among the studied groups; all were higher in normal compared with AEH and EC, with a statistically significant difference. The higher PRB expression and decreased miR-34a and RASSF1A expression were associated with resistance to hormonal therapy in AEH. High PRB in EC is associated with lower RASSFA1, E-cadherin, and miR-34a. Decreased expressions of RASSF1A, miR-34a, and E-cadherin had a significant connection to advanced stages. Expression of PRB and miR-34a and serum levels of RASSF1A predict response to treatment in cases of AEH. High PRB and low E-cadherin expression are associated with progressive disease in EC.
RESUMO
Introduction: Lung cancer is the most common type of cancer, causing worldwide mortality. Therefore, this study is necessary for continuing research into new effective and safe treatments. Recently, herbal medicines have been used for the treatment of various diseases such as cancer. This study aimed to investigate the potential anti-proliferative activity and investigate the mechanisms of hesperidin extract on the non-small lung cancer cells A549 and H460 vs. cisplatin via targeting the miR 34a/PD-L1/NF-κB signalling pathway. Material and methods: To determine the cytotoxic effects of the hesperidin extract on non-small lung cancer cells, sulphorhdamine B assay was performed. To show the inhibition of migration by hesperidin extract, wound healing assay was conducted. A quantitative polymerase chain reaction test was used to quantify the expressions of miR-34a, programmed cell death ligand-1 (PDL-1), epidermal growth factor receptor (EGFR), and P53 genes, which are involved in apoptosis pathway. Also, cell cycle assay was performed by using a flow cytometer. Results: The hesperidin extract could significantly inhibit proliferation of non-small lung cancer cells A549 and H460. Western blot assay demonstrated that hesperidin induced suppression of nuclear factor κB signalling pathway. The messenger RNA expression levels of MiR-34a and P53 were up-regulated significantly by hesperidin treatment, while the EGFR and P53 genes were down-regulated. The flow cytometer confirmed that cell cycle arrest occurred at the sub-G1 and G2 phases in A549 and H460, respectively. Conclusions: Our study demonstrated that hesperidin extract could significantly inhibit non-small lung cancer cell growth by induction of the apoptosis signalling pathway. Therefore, hesperidin might open novel strategies for effective and safe cancer treatment and reduce the adverse side effects of several chemotherapeutic treatments such as cisplatin.
RESUMO
Osteoarthritis is a heterogeneous disease with a complex etiology. However, there is no effective treatment strategy at present. The purpose of this study was to explore the miRNAâmRNA regulatory network and molecular mechanism that regulate the progression of osteoarthritis. In this article, we downloaded datasets (GSE55457, GSE82107, GSE143514 and GSE55235) from Gene Expression Omnibus (GEO) to screen differentially expressed mRNAs in osteoarthritis. Then, through weighted gene coexpression network (WGCNA), functional enrichment, proteinâprotein interaction (PPI) network, miRNAâmRNA coexpression network, ROC curve, and immune infiltration analyses and qPCR, the mRNA PLCD3, which was highly expressed in osteoarthritis and had clinical predictive value, was screened. We found that PLCD3 directly targets miR-34a-5p through DIANA and dual-luciferase experiments. The expression levels of PLCD3 and miR-34a-5p were negatively correlated. In addition, CCK-8 and wound healing assays showed that the miR-34a-5p mimic inhibited hFLS-OA cell proliferation and promoted hFLS-OA cell migration. PLCD3 overexpression showed the opposite trend. Western blotting further found that overexpression of miR-34a-5p reduced the protein expression levels of p-PI3K and p-AKT, while overexpression of PLCD3 showed the opposite trend. In addition, combined with the effect of the PI3K/AKT pathway inhibitor BIO (IC50 = 5.95 µM), the results showed that overexpression of miR-34a-5p increased the inhibitory effects of BIO on p-PI3K and p-AKT protein expression, while overexpression of PLCD3 significantly reversed these inhibitory effects. Overall, the miR-34a-5p/PLCD3 axis may mediate the PI3K/AKT pathway in regulating cartilage homeostasis in synovial osteoarthritis. These data indicate that miR-34a-5p/PLCD3 may be a new prognostic factor in the pathology of synovial osteoarthritis.