Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Probes ; 53: 101572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525042

RESUMO

Endometrial carcinoma (EC) is a female-specific malignant tumor. Although current treatments can achieve good outcomes and improve patient survival, there remains a high incidence of treatment-induced infertility, a serious side effect that is unacceptable to those of childbearing age. Studies have demonstrated that micro ribonucleic acids (microRNAs or miRNAs) such as miR-544a regulate tumor-related gene expression. However, whether miR-544a is involved in the progression of EC is unknown. This study aimed to investigate the biological functions and underlying mechanisms of miR-544a in EC in vivo and in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed miR-544a overexpression in EC tissue and cell lines, which was associated with a decreased in overall survival as revealed by Kaplan-Meier analysis. Functionally, the miR-544a inhibitor restricted the proliferation [detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay], invasion, and migration (detected by transwell assay) of human endometrial adenocarcinoma cells (HEC-1B and Ishikawa) and facilitated cell apoptosis (detected by flow cytometry assay). Western blotting analysis revealed that the miR-544a inhibitor decreased the expressions of matrix metalloproteinase (MMP)-2 and MMP-9 and elevated the levels of cleaved caspase3 and cleaved poly (ADP-ribose) polymerase. Furthermore, animal experiments indicated that the miR-544a antagonist (antagomir-544a) suppressed tumor growth significantly in a mouse xenograft model. The mechanistic, qRT-PCR, and immunohistochemical indications were that a reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and miR-544a had inverse expression changes in EC. Bioinformatics analysis revealed RECK as a potential target for miR-544a, and this was verified by the dual-luciferase reporter assay. Subsequently, in vitro experiments, including transwell assay, MTT assay, flow cytometry assay, and Western blotting analysis, demonstrated that RECK exerted antitumor effects on EC, which were negatively regulated by miR-544a. Taken together, our study findings suggested miR-544a as a valuable target in EC therapy.


Assuntos
Neoplasias do Endométrio/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Análise de Sobrevida , Regulação para Cima
2.
J Cell Biochem ; 120(9): 14670-14678, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31016789

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in endothelium development. A lncRNA, LEF1-AS1, is recently emerging as a potent mediator of the proliferation and migration of a number of cells, including smooth muscle cells. However, the effects of LEF1-AS1 in atherosclerosis remains largely unknown. Specimens from patients with coronary artery atherosclerosis were collected. The quantitative real-time polymerase chain reaction was used to analyze levels of LEF1-AS1 and microRNA-544a (miR-544a). Western blot analysis was used to assess PTEN, P-Akt, and T-Akt protein expression. Proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 assay, scratch wound assay, and transwell assay, respectively. The interaction between LEF1-AS1, miR-544a, and PTEN was probed using bioinformatical analysis and dual-luciferase assay. In plasma and tissue of patients with coronary artery atherosclerosis, LEF1-AS1 was upregulated and miR-544a was downregulated. A negative correlation was found between LEF1-AS1 and miR-544a. miR-544a overexpression reversed the inhibition of LEF1-AS1 in smooth muscle cell proliferation and invasion, which were mediated through the PTEN pathway. LEF1-AS1 regulates smooth muscle cell proliferation and migration through the miR-544a/PTEN axis, indicating that LEF1-AS1 may be a potential therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/patologia , Movimento Celular , Proliferação de Células , Doença da Artéria Coronariana/patologia , MicroRNAs/genética , Músculo Liso Vascular/citologia , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/antagonistas & inibidores , Músculo Liso Vascular/metabolismo , Oligonucleotídeos Antissenso/genética , PTEN Fosfo-Hidrolase/genética , Prognóstico
3.
Invest New Drugs ; 37(6): 1127-1134, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30734202

RESUMO

Long non-coding RNAs (lncRNAs) are increasingly recognized as important regulators in tumor development. This study aims to investigate the potential role oflncRNALEF1-AS1, in the progression of lung cancer. Quantitative real-time PCR (qRT-PCR) and western blot assays showed that LEF1-AS1 was upregulated while miR-544a was downregulated in lung cancer specimens and cells. Overexpression of LEF1-AS1 led to the enhancement of cell proliferation and invasion, revealed by CCK-8 assay and transwell assay. A negative correlation was found between LEF1-AS1 and miR-544a. BLAST analysis and dual-luciferase assay confirmed that FOXP1 is a downstream effector of miR-544a. Therefore, the LEF1-AS1/miR-544a/FOXP1 axis is an important contributor to lung cancer progression. Collectively, our novel data uncovers a new mechanism that governs tumor progression in lung cancer and provides new targets that may be used for disease monitoring and therapeutic intervention of lung cancer.


Assuntos
Neoplasias Pulmonares/patologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Humanos , Lentivirus/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Carga Tumoral , Cicatrização
4.
J Cell Physiol ; 233(8): 5847-5855, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29219175

RESUMO

An increasing number of studies have reported that lncRNAs are responsible for the development of neuropathic pain. In our current study, chronic constriction injury (CCI) rat models were established and we observed that lncRNA XIST was greatly increased. Knockdown of XIST can relieve pain characteristics including both mechanical and thermal hyperalgesia in CCI rats. Meanwhile, XIST down-regulation could inhibit neuro-inflammation by reducing expression of inflammatory cytokines including tumor necrosis factor (TNF)-α, IL-1ß, and IL-6 and in CCI rats. By performing bioinformatics technology, miR-544 was predicted to have interactions with XIST and dual-luciferase reporter assays validated the correlation between them. A negative correlation between miR-544 and XIST was observed by carrying out XIST loss or gain of function tests. miR-544 markedly alleviated neuropathic pain development in CCI rats via targeting inflammatory cytokines, which was reversed by XIST over-expression. Moreover, STAT3 was manifested to be a target gene of miR-544 by bioinformatics predictions and it was activated in CCI rats. Over-expression of STAT3 was able to induce neuropathic pain and miR-544 inhibited this process in vivo. Furthermore, XIST increased STAT3 expression by sponging miR-544 in neuropathic pain development. To conclude, our present study indicated that XIST can contribute to neuropathic pain progression in rats through down-regulating miR-544 and up-regulating STAT3. Our results suggested that XIST/miR-544/STAT3 axis can serve as a novel therapeutic target in neuropathic pain development.


Assuntos
MicroRNAs/biossíntese , Neuralgia/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/biossíntese , Animais , Linhagem Celular , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Inflamação/genética , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Modelos Animais , Neuralgia/patologia , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese
5.
Cell Physiol Biochem ; 51(4): 1921-1931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30513512

RESUMO

BACKGROUND/AIMS: To explore the potential role of miR-544a in spinal cord injury and the possible mechanism involved. METHODS: We established a mouse model with spinal cord injury to examine the changes in grip force recovery of the forelimb or the posterior limb of the mouse. Microarray was performed to achieve differentiated miRNAs in the mice. The expressions of miR-544a, MCP-1, IL36B and IL17B after spinal cord injury were detected by qRT-PCR. Subsequently, miR-544a was overexpressed to observe changes in inflammation and grip strength after spinal cord injury. Target gene of miR-544a was then predicted using bioinformatics technology. Finally, dual luciferase reporter gene assay was used to verify the binding of miR-544a to its target gene. RESULTS: Using mice models with spinal cord injury, we found that the strength of their four limbs began to recover 7 days after injury. The results of microarray and qRT-PCR confirmed that mir-544a level in mice with spinal cord injury decreased with increase of injury time, while the levels of inflammatory genes MCP-1 (monocyte chemoattractant protein-1), IL1 (interleukin-1) and TNF-α (tumor necrosis factor alpha) IL36B (interleukin-36 beta) and IL17B (interleukin-17 beta) were significantly increased. However, overexpression of miR-544a in the mice significantly reduced the level of inflammation and restored their grip strength in their four limbs. Finally, we found that miR-544a can bind to the NEUROD4 (Neurogenic differentiation 4) 3'UTR (Untranslated Region) region through bioinformatics website prediction, which was further confirmed by dual luciferase reporter assay. NEUROD4 level was significantly reduced following the overexpression of miR-544a. CONCLUSION: The expression of miR-544a was significantly decreased after spinal cord injury. High expression of miR-544a could alleviate the inflammation caused by spinal cord injury and promote the recovery of spinal cord via the inhibition of NEUROD4.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação para Baixo , Inflamação/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Traumatismos da Medula Espinal/genética , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/imunologia , Proteínas do Tecido Nervoso/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Regulação para Cima
6.
Cancer Cell Int ; 18: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636640

RESUMO

OBJECTIVE: To study the potential role of miR-544 in the immune escape mechanism of hepatoma cells. METHODS: Natural killer (NK) cells were collected from healthy volunteers and patients with liver cancer. Interleukin (IL)-2 activated-NK-92 cells were transfected with miR-544 inhibitor/mimic or NC/pre-NC in HepG2 co-culture system. NK-92 cells were treated with control, IL-2, IL-2 + pre-NC, IL-2 + miR-544 mimic, IL-2 + miR-544 mimic + pcDNA and IL-2 + miR-544 mimic + pcDNA-runt-related transcription factor 3 (RUNX3) groups. Mice models of liver cancer were well established. Expression of miR-544, natural cytotoxicity receptor 1 (NCR1) and RUNX3 were evaluated by quantitative real-time PCR and western blotting. Flow cytometry and ELISA were used to determine NK cell cytotoxicity and the levels of INF-γ, respectively. RESULTS: MiR-544 was upregulated while NCR1 and RUNX3 was downregulated in NK cells of patients with liver cancer. The levels of IFN-γ and miR-544 expression were increased and decreased in IL-2 activated-NK cells, respectively. Inversely, miR-544 overexpression inhibited NK cell cytotoxicity by downregulating IFN-γ. However, miR-544 directly targeted RUNX3 and negatively regulated NCR1. Furthermore, miR-544 promoted immune escape of hepatoma cells in vivo and in vitro. CONCLUSION: miR-544 promoted the immune escape of liver cancer cells by downregulating NCR1 via targeting RUNX3.

7.
Proc Natl Acad Sci U S A ; 112(44): 13627-32, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26487685

RESUMO

Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.


Assuntos
Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Animais , Proteínas de Ligação ao Cálcio , Feminino , Camundongos , Família Multigênica
8.
Dig Dis Sci ; 61(9): 2535-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27165435

RESUMO

BACKGROUND/AIMS: MicroRNAs (miRNAs) are a group of small RNA molecules that post-transcriptionally regulate gene expression. Aberrant expression of miRNAs has been associated with tumorigenesis in various cancers. miR-544a is an understudied miRNA that has recently been implicated in regulating invasion in lung cancer. However, its role in regulating invasion and the underlying mechanism have not been investigated in colorectal cancer (CRC) cells. METHODS: Microarray analysis was performed in metastatic colorectal tumor samples and their matched normal tissues to identify differentially expressed miRNAs. Quantitative real-time PCR was used to detect miR-544a levels in tumor samples and CRC cell lines with varying metastatic properties. miR-544a mimic or inhibitor was transfected into SW480 and HCT116 cells, respectively, followed by wound healing and invasion assays. Western Blot and luciferase assay were performed to investigate the direct target of miR-544a. Xenograft mouse models was used to examine in vivo function of miR-544a. RESULTS: Our data showed that expression of miR-544a was significantly up-regulated in metastatic tumor samples and CRC cell lines. Inhibition of miR-544a reduced migration and invasion in HCT116 cells. Homeobox A10 (HOXA10) was the direct target of miR-544a which was required for the function of miR-544a in regulating invasiveness. miR-544a inhibitor and/or HOXA10 overexpression reduced lung metastases in HCT116 xenografts. CONCLUSIONS: Our study demonstrates that miR-544a regulates invasive and metastatic properties of CRC cells by modulating HOXA10 expression level both in vitro and in vivo. miR-544a may represent a new therapeutic target for the intervention of metastatic colorectal cancer.


Assuntos
Carcinoma/genética , Neoplasias Colorretais/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Animais , Western Blotting , Células CACO-2 , Carcinoma/patologia , Carcinoma/secundário , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Proteínas Homeobox A10 , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Metástase Neoplásica , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
9.
J Cell Biochem ; 116(10): 2155-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808723

RESUMO

The balance between the self-renewal and differentiation of male germline stem cells (mGSCs) is critical for the initiation and maintenance of mammalian spermatogenesis. The promyelocytic leukemia zinc finger (PLZF), a zinc finger protein, is a critical factor for maintaining the self-renewal of mGSCs, so, evaluation of the PLZF pathway in mGSCs may provide a deeper insight into mammalian spermatogenesis. miRNA was also an important regulating factor for the self-renewal and differentiation of mGSCs; however, there is currently no data indicating that which miRNA regulate the self-renewal and differentiation of mGSCs via PLZF. Here, we predicted the prospective miRNA targeting to PLZF using the online Bioinformatics database-Targetscan, and performed an analysis of the dual-luciferase recombinant vector, psiCHCEKTM-2-PLZF-3'UTR. miR-544 mimics (miR-544m), miR-544 inhibitors (miR-544i), Control (NC, scrambled oligonucleotides transfection), pPLZF-IRES2-EGFP or PLZF siRNA were transfected into mGSCs; the cells proliferation was evaluated by BRDU incorporation assay and flow cytometry, and the mGSC marker, GFRa1, PLZF, KIT, DAZL, and VASA expression were analyzed by RT-qPCR, immunofluorescence and Western blot. The results showed that miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF. Our study identifies a new regulatory pathway for PLZF and expands upon the PLZF regulatory network in mGSCs.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Cabras/genética , Fatores de Transcrição Kruppel-Like/genética , Espermatogênese/genética , Animais , Células Germinativas/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica , Transdução de Sinais , Células-Tronco
10.
Redox Biol ; 73: 103175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795544

RESUMO

Exploring and discovering novel circRNAs is one of the ways to develop innovative drugs for the diagnosis and treatment of myocardial ischemia-reperfusion injury (MI/RI). In the work, some dysregulated circRNAs were found by microarray screening analysis in AC16 cells, and hsa_circRNA_104852 named circMIRIAF was screened, which was up-regulated in AC16 cells damaged by hypoxia-reoxygenation injury (H/RI). The comprehensive analysis of ceRNA network revealed the potential relationship of circMIRIAF/miR-544/WDR12. Then, the results of interaction research confirmed that circMIRIAF acted as sponge of miR-544 to positively regulate WDR12 protein expression. Further, the validation results indicate that miR-544 silencing increased the expression of WDR12, and WDR12 activated Notch1 signal to aggravate H/RI of AC16 cells and MI/RI of mice via regulating oxidative stress and inflammation. Furthermore, silencing circMIRIAF caused the decreased circMIRIAF levels and the increased miR-544 levels in cardiomyocytes, while excessive miR-544 inhibited WDR12 expression to alleviate the disorder. On the contrary, excessive circMIRIAF increased WDR12 expression by adsorbing miR-544 to exacerbate H/RI in AC16 cells. In addition, circMIRIAF siRNA reversed the aggravation of H/RI in cells caused by WDR12 overexpression. Overall, circMIRIAF can serve as a drug target or treating MI/RI, and circMIRIAF could sponge miR-544 and enhance WDR12 expression to aggravate MI/RI, which may provide a novel therapeutic strategy for MI/RI treatment.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Circular , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , RNA Circular/genética , Transdução de Sinais
11.
Gastroenterol Rep (Oxf) ; 12: goae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425655

RESUMO

Background: Autophagy death of cancer cells is detrimental to apoptosis induced by therapeutic drugs, which promotes tumor progression to a certain extent. Increasing reports have demonstrated the regulatory role of circular RNAs (circRNAs) in autophagy. Here, we aimed to determine the role of hsa_circ_0009109 in autophagy in gastric cancer (GC). Methods: The effects of hsa_circ_0009109 on autophagy were examined using quantitative real-time polymerase chain reaction (qPCR), transmission electron microscopy, Western blot, and immunofluorescence. The mechanism of hsa_circ_0009109 regulating the miR-544a-3p/bcl-2 axis was analysed using fluorescence in situ hybridization, dual-luciferase reporter, and rescue experiments. Results: Functional testing indicated that hsa_circ_0009109 was significantly down-expressed in GC tissues and cell lines. A reduction in cytoplasmic-derived hsa_circ_0009109 could promote GC progression by accelerating cell proliferation, enhancing migration and invasion, inhibiting apoptosis, and accelerating the cell cycle progression. Besides, hsa_circ_0009109 was found to exert the effect of an autophagy inhibitor such as 3-Methyladenine (3-MA), which was manifested by the weakening of the immunofluorescence of LC3B and the reduction in autophagy-related proteins after overexpression of hsa_circ_0009109, while increased autophagosomes were observed after interference with hsa_circ_0009109. Subsequently, the crosstalk between hsa_circ_0009109 and miR-544a-3p/bcl-2 was verified using dual-luciferase reporter assay. The autophagy status was altered under the regulation of the hsa_circ_0009109-targeted miR-544a-3p/bcl-2 axis. Conclusions: The hsa_circ_0009109 mediated a novel autophagy regulatory network through targeting the miR-544a-3p/bcl-2 axis, which may shed new light on the exploration of therapeutic targets for the clinical treatment of GC.

12.
J Mol Neurosci ; 72(8): 1738-1748, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687299

RESUMO

Spinal cord injury (SCI) can cause permanent neurological deficits. Circular RNA Ncam2 (circ-Ncam2 also termed mmu_circ_0006413) has been reported to be overexpressed in SCI mouse models. However, the function of circ-Ncam2 in SCI has not been validated. Lipopolysaccharide (LPS) was used to activate mouse microglia (BV2 cells). Expression levels of circ-Ncam2 were determined by RT-qPCR. Relative protein levels were evaluated by western blotting. Cytokines were determined by ELISA. The regulatory mechanism of circ-Ncam2 was validated by dual-luciferase reporter and RNA pull-down assays. Effects of LPS-induced BV2 cells on mouse neuronal (HT22 cells) viability, proliferation, and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. LPS stimulation promoted circ-Ncam2 expression in BV2 cells. Inhibition of circ-Ncam2 mitigated LPS-induced BV2 cell activation and inflammation. Mechanically, circ-Ncam2 adsorbed miR-544-3p to regulate TLR4 expression. Also, either miR-544-3p inhibition or TLR4 overexpression weakened circ-Ncam2 silencing-mediated effects on LPS-induced BV2 cell activation and inflammation. Furthermore, LPS-induced BV2 cells suppressed HT22 cell proliferation and promoted HT22 cell apoptosis through the circ-Ncam2/miR-544-3p axis. Importantly, circ-Ncam2 activated the NF-κB signaling via the miR-544-3p/TLR4axis. circ-Ncam2 silencing lowered LPS-induced microglia activation and neuronal apoptosis via blocking the TLR4/NF-κB pathway through acting as a miR-544-3p sponge, suggesting that circ-Ncam2 may be involved in secondary SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Animais , Apoptose , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , MicroRNAs/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Traumatismos da Medula Espinal/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Hum Cell ; 34(5): 1455-1465, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34235620

RESUMO

Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor growth. In this study, we investigated the KRAS status in correlation with clinicopathological features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor front (T2). Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage of KRAS-positive tumor cells and a higher intensity of immunohistochemical reaction in T2 than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant allele had significantly higher protein expression of the wild-type KRAS. Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in the regulation of wild-type KRAS protein expression in sporadic CRC.


Assuntos
Adenocarcinoma/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Front Cell Dev Biol ; 9: 720900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527673

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects obesity-associated metabolic syndrome, which exhibits hepatic steatosis, insulin insensitivity and glucose intolerance. Emerging evidence suggests that microRNAs (miRNAs) are essential for the metabolic homeostasis of liver tissues. Many hepatic miRNAs located in the miR-379/miR-544 cluster were significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. However, the function of the miR-379/miR-544 cluster in the process of hepatic steatosis remains unclear. Here, we report that the novel function of miR-379/miR-544 cluster in regulating obesity-mediated metabolic dysfunction. Genetical mutation of miR-379/miR-544 cluster in mice displayed resistance to high-fat diet (HFD)-induced obesity with moderate hepatic steatosis and hypertriglyceridemia. In vitro studies revealed that silencing of miR-379 in human hepatocellular carcinoma (HepG2) cells ameliorated palmitic acid-induced elevation of cellular triglycerides, and overexpression of miR-379 had the opposite effect. Moreover, Igf1r (Insulin-like growth factor 1 receptor) and Dlk1 (Delta-like homolog 1) were directly targeted by miR-379 and miR-329, respectively, and elevated in the livers of the miR-379/miR-544 cluster knockout mice fed on HFD. Further transcriptome analyses revealed that the hepatic gene expressions are dysregulated in miR-379/miR-544 knockout mice fed with HFD. Collectively, our findings identify the miR-379/miR-544 cluster as integral components of a regulatory circuit that functions under conditions of metabolic stress to control hepatic steatosis. Thus, this miRNA cluster provides potential targets for pharmacologic intervention in obesity and NAFLD.

15.
Onco Targets Ther ; 14: 3745-3755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163177

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Long non-coding RNA plays an important role in the development of HCC. This study analyzed the impact of MEG3 on malignant behavior of HCC and explored its possible molecular mechanism. METHODS: Expression of MEG3 in HCC tissues and cell lines was measured by qRT-PCR. Transfection efficiency of MEG3 was verified by qRT-PCR. Cell proliferation, transwell migration, invasion and cell cloning assays were used to detect the effect of MEG3 on the proliferation, migration and invasion ability of HCC cells. The bioinformatics analysis was applied to predict the binding between miR-544b and MEG3 as well as BTG2. Luciferase reporter assay was performed to verify their interaction. Finally, the m6A modification of MEG3 by METTL3 was identified through RIP experiments. RESULTS: MEG3 was lowly expressed in HCC tissues and cells. Overexpression of MEG3 inhibits the proliferation, migration and invasion of HCC cells. MiR-544b can be sponged by MEG3, and overexpression of miR-544b reverses the anti-cancer effect of MEG3. We further confirmed that BTG2 gene is the target gene of miR-544b. Epigenetic studies have shown that METTL3-mediated N6-methyladenosine modification led to MEG3 downregulation. CONCLUSION: In HCC, MEG3 and BTG2 are lowly expressed while miR-544b is highly expressed. MEG3 regulates the expression of BTG2 through miR-544b, thus affecting the malignant behavior of HCC. METTL3 regulates the m6A modification of MEG3 and its expression. This study clarified the role of MEG3/miR-544b/BTG2 axis in HCC and also provided new targets for HCC research.

16.
Epigenomics ; 13(22): 1797-1815, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726075

RESUMO

Aim: The exact epigenetic mechanisms that determine the balance of T helper (Th)1 and Th2 cells and autoimmune responses in multiple sclerosis (MS) remain unclear. We aim to clarify these. Methods: A combination of bioinformatics analysis and molecular evaluations was utilized to identify master hub genes. Results: A competitive endogenous RNA network containing six long noncoding RNAs (lncRNAs), 21 miRNAs and 86 mRNAs was provided through enrichment analysis and a protein-protein interaction network. NEAT1 and MALAT1 were found as differentially expressed lncRNAs using Gene Expression Omnibus (GSE21942). Quantitative real-time PCR results demonstrate dysregulation in the RUNX3 (a regulator of Th1/Th2 balance), GATA3 and TBX21, as well as miR-544a and miR-210-3p (which directly target RUNX3). ELISA also confirmed an imbalance in IFN-γ (Th1)/IL-4 (Th2) in MS patients. Conclusion: Our findings introduce novel biomarkers leading to Th1/Th2 imbalance in MS.


Lay abstract Studies have shown that irregular control of noncoding RNAs (ncRNAs) in immune responses can lead to multiple sclerosis. T helper (Th)1 and Th2 cells balance plays an important role in regulating inflammation in this disease. In this study, to investigate the molecular factors that may disrupt this balance, we investigated the role of ncRNAs. Our results suggest that miR-210-3p and miR-544a irregularities can disrupt the Th1/Th2 balances through targeting the RUNX3 gene, which consequently leads to IFNγ/IL4 imbalance. It is also clarified that NEAT1 and MALAT1 long noncoding RNAs also have a role in this imbalance exerting their effect through miR-210-3p and miR-544a. This molecular pathway may provide significant information on multiple sclerosis disease development.


Assuntos
MicroRNAs , Esclerose Múltipla , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Esclerose Múltipla/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Equilíbrio Th1-Th2
17.
Gene ; 723: 143986, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323309

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Accumulating evidence shows that microRNAs play important roles in diabetic kidney. However, the potential role of MicroRNA-544 (miR-544) in DN remains unclear. In this study, we explored the role of miR-544 on inflammation and fibrosis in diabetic kidney using db/db mice. Renal expression of miR-544 was decreased in mice, companied by increased the expression of FASN. The dual luciferase assay confirmed FASN as a direct target of miR-544. Over-expression of miR-544 significantly ameliorated renal injury, mesangial matrix and renal fibrosis. In addition, over-expression of miR-544 significantly attenuated inflammatory cells infiltration and IL-1, IL-6, TNF- and iNOS production in DN. Furthermore, miR-544 over-expression inhibited the activation of NF-kB signal pathway in DN. In conclusion, our finding demonstrated that miR-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN, suggesting that miR-544 might have therapeutic potential for the treatment of DN.


Assuntos
Citocinas/metabolismo , Nefropatias Diabéticas/genética , Ácido Graxo Sintase Tipo I/genética , MicroRNAs/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões 3' não Traduzidas , Animais , Nefropatias Diabéticas/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Células HEK293 , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Receptores para Leptina/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
18.
Aging (Albany NY) ; 12(23): 24009-24022, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33221764

RESUMO

Peritoneal metastasis (PM) is the main cause of poor prognosis in patients with advanced gastric cancer (GC). Increasing evidence has suggested that cancer-associated EVs in body fluids may assist in the diagnosis and treatment of GC. Here, we investigated the role of GC-derived EVs in PM development. Our results demonstrate that expression of the tumor suppressor promyelocytic leukemia zinc finger (PLZF) is decreased in GC tissues and PM lesions from GC patients. PLZF suppression promoted migration and invasion of peritoneal mesothelial HMrSV5 cells, while PLZF overexpression suppressed HMrSV5 cell migration and invasion. Microarray analysis revealed significantly upregulated expression of several miRNAs in EVs isolated from GC patients with PM, including miR-544. The increased miR-544 expression was confirmed in GC tissues and PM-derived EVs. Transfection with miR-544 reduced PLZF expression in HMrSV5 cells, while miR-544 inhibition increased PLZF expression. Incubation of GC cells with peritoneal mesothelial HMrSV5 cells showed that miR-544 could be transferred from GC-derived EVs to peritoneal cells, where it suppressed the PLZF expression. These findings indicate that EV-mediated transfer of miR-544 decreases the PLZF expression in PM lesions, which suggests miR-544 could potentially serve as a diagnostic biomarker and therapeutic target for treatment of GC patients.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neoplasias Peritoneais/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
19.
Arch Physiol Biochem ; 126(4): 369-375, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32141339

RESUMO

Recent evidence has demonstrated that exosomes derived from mesenchymal stem cells (MSCs) may serve as a reservoir of miRNAs conferring protection from certain diseases. Hence, the current study was performed with the aim of investigating whether MSCs-exosomal miR-544 could exert protection against spinal cord injury (SCI). In the present study, bone mesenchymal stem cells (BMSCs) isolated from rat bone marrows were transfected with miR-544 mimic. The miR-544-overexpressing BMSCs-derived exosomes (BMSC-Exo) were intravenously injected into SCI model rats. Neurological function, histopathological changes, and the release of inflammatory cytokines were further examined. Results showed that BMSCs-exosomal miR-544 mitigated neural functional recovery after SCI. Moreover, overexpression of miR-544 in BMSC-Exo abated histologic deficits and neuronal loss caused by SCI. Notably, this therapeutic intervention also reduced inflammation following SCI. In conclusion, exosomes derived from miR-544-overexpressing BMSCs improved functional recovery and promoted neuronal survival by attenuating inflammation after SCI.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Animais , Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
20.
Onco Targets Ther ; 13: 745-755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158226

RESUMO

PURPOSE: Circular RNA (circRNA) is involved in the development of various cancers. However, whether circRNA can inhibit the tumorigenesis of non-small cell lung cancer (NSCLC) is still unclear. We aimed to explore the epigenetic function of tumor-suppressive circRNA (hsa_circ_RNA_0011780) and its downstream regulatory factors in NSCLC. PATIENTS AND METHODS: Quantitative polymerase chain reaction (qPCR) was used to evaluate hsa_circ_11780 expression in NSCLC tissues and cell lines. The impact of high hsa_circ_11780 expression on overall survival in patients with NSCLC was tested using the Log rank test. The association between decreased hsa_circ_11780 expression and clinicopathological features in patients with NSCLC was analyzed using the Chi-squared test. In vitro cell proliferation and apoptosis were assayed using the cell counting kit-8 (CCK-8) and flow cytometry, respectively. Mice xenograft models were used to determine the tumor promoting effects of hsa_circ_11780 on NSCLC in vivo. The underlying regulatory mechanism was predicted by bioinformatics and verified by a dual-luciferase reporter assay, RNA transfection, qPCR, and Western blotting. The correlation between miR-544a and hsa_circ_11780 expression was verified using Spearman correlation coefficient. RESULTS: The expression of hsa_circ_11780 in NSCLC tissues and cell lines strongly declined. Low hsa_circ_11780 expression is more likely to present in patients with a large tumor size (>3cm), distant metastasis, and poor overall survival. hsa_circ_11780 overexpression strongly inhibited proliferation, migration, and invasion of NSCLC cells (H226 and A549) in vitro and inhibited tumor growth in vivo. Furthermore, hsa_circ_11780 repressed miR-544a function by competitively binding to the complementary sites of miR-544a. miR-544a released by the declining expression of hsa_circ_11780 reduced the protein concentration of F-Box and WD repeat domain containing 7 (FBXW7) in NSCLC cells. CONCLUSION: FBXW7 expression mediated by the hsa_circ_11780/miR-544a axis is markedly associated with the proliferation, migration, and invasion of NSCLC, resulting in decreased survival. These findings suggest that this regulatory axis may serve as a novel therapeutic target in NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA