Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 204(1): 133-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057687

RESUMO

PURPOSE: Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS: Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS: Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION: The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , MicroRNAs/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/uso terapêutico
2.
Mol Pharm ; 21(3): 1364-1381, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38291993

RESUMO

Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T Citotóxicos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Células Jurkat , MicroRNAs/genética , Imunoterapia/métodos
3.
J Nanobiotechnology ; 22(1): 293, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802812

RESUMO

BACKGROUND: The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS: Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS: Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.


Assuntos
Elastina , MicroRNAs , Nanopartículas , Peptídeos , Animais , MicroRNAs/genética , Elastina/química , Camundongos , Peptídeos/química , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Feminino , Polipeptídeos Semelhantes à Elastina
4.
J Cell Mol Med ; 25(3): 1700-1711, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438362

RESUMO

Wet age-related macular degeneration (wAMD), characterized by choroidal neovascularization (CNV), is a leading cause of irreversible vision loss among elderly people in developed nations. Subretinal fibrosis, mediated by epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells, leads to unsuccessful anti-vascular endothelial growth factor (VEGF) agent treatments in CNV patients. Under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) increases the stability and activation of p53, which activates microRNA-34a (miRNA-34a) transcription to promote fibrosis. Additionally, Klotho is a target gene of miRNA-34a that inhibits fibrosis. This study aimed to explore the role of the HIF-1α/p53/miRNA-34a/Klotho axis in subretinal fibrosis and CNV. Hypoxia-induced HIF-1α promoted p53 stability, phosphorylation and nuclear translocation in ARPE-19 cells (a human RPE cell line). HIF-1α-dependent p53 activation up-regulated miRNA-34a expression in ARPE-19 cells following hypoxia. Moreover, hypoxia-induced p53-dependent miRNA-34a inhibited the expression of Klotho in ARPE-19 cells. Additionally, the HIF-1α/p53/miRNA-34a/Klotho axis facilitated hypoxia-induced EMT in ARPE-19 cells. In vivo, blockade of the HIF-1α/p53/miRNA-34a/Klotho axis alleviated the formation of mouse laser-induced CNV and subretinal fibrosis. In short, the HIF-1α/p53/miRNA-34a/Klotho axis in RPE cells promoted subretinal fibrosis, thus aggravating the formation of CNV.


Assuntos
Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Glucuronidase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Epitélio Pigmentado da Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Hipóxia/metabolismo , Proteínas Klotho , Camundongos , Modelos Biológicos , Fosforilação , Estabilidade Proteica , Transporte Proteico , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
5.
J Biol Chem ; 295(50): 17169-17186, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33028635

RESUMO

We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Feminino , Fase G1 , Células HeLa , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , Pontos de Checagem da Fase S do Ciclo Celular , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteínas de Transporte Vesicular/genética
6.
J Biochem Mol Toxicol ; 35(6): 1-14, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33661552

RESUMO

The anticancer agent, cisplatin (CIS), is associated with hepatotoxic effects related to activation of oxidative stress and inflammation pathways. CIS-induced oxidative DNA damage reduces sirtuin 1 (SIRT1) activity, which in turn, modulates the activity of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α). Moreover, microRNA-34a (miRNA-34a) was shown to hinder both SIRT1 and nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Thus, targeting such a pathway can alleviate CIS-induced hepatotoxicity. Betanin (BET) is a natural red glycoside food dye obtained from beets, which is reported to exhibit antioxidant function. However, its role in CIS-induced liver injury and the molecular mechanism has not been fully elucidated. Thus, the aim of this study was to investigate the ameliorative effect of BET on CIS-induced acute hepatotoxicity through the SIRT1/PGC-1α signaling pathway and illustrate the impact of miRNA-34a. Seventy-two rats were divided into six equal groups: (1) Control, (2) BET, (3) CIS, (4) CIS/BET, (5) CIS/EX527, and (6) CIS/BET/EX527. CIS-induced liver injury was evidenced by deregulated BAX and BCL2 levels, decreased levels of AMP-activated protein kinase and PGC-1α expression, and decreased SIRT1 activity. Consequently, reduced levels of Nrf2 and the expression of associated heme oxygenase-1 and glutamate-cysteine ligase modifier subunit were observed. Intriguingly, BET succeeded in reducing the CIS-induced liver injury through reducing miRNA-34a expression and enhancing the SIRT1/PGC-1α pathway. These findings coincide with the molecular docking results and the histopathological picture. In conclusion, the current research provided novel findings of the BET ameliorative effect on CIS-induced liver injury through modulating miRNA-34a expression and the SIRT1/PGC-1α signaling cascade.


Assuntos
Betacianinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cisplatino/efeitos adversos , Fígado/metabolismo , MicroRNAs/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cisplatino/farmacologia , Fígado/patologia , Masculino , Ratos , Ratos Wistar
7.
Toxicol Appl Pharmacol ; 404: 115184, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777238

RESUMO

Cisplatin (CIS)-mediated nephrotoxicity is induced via transforming growth factor-beta (TGF-ß) and TGF-ß-activated kinase (TAK1). TGF-ß and TAK1 are known to interact with microRNA-let-7b and microRNA-26b, respectively. Additionally, TGF-ß1 is reported to down-regulate the autophagy marker microtubule-associated protein 1 light chain 3-II (LC3-II) through upregulation of microRNA-34a. Pentoxifylline (PTX) anti-inflammatory effects are mediated via suppressing TGF-ß and regulating mammalian target of rapamycin (mTOR). The current study aimed to investigate the involvement of microRNAs let-7b, 26b, and 34a, and the modulating impact of PTX on CIS-induced nephrotoxicity. Moreover, we aimed at examining the ability of PTX to interact with TGF-ß receptor-1 (TGFßR-1), and TAK1, and examine its ability to downgrade the previously reported toxicities. Hence, the expression of the aforementioned microRNAs, and protein levels of TGFßR-1, TGF-ß1, TAK1, mTOR, LC3-II, and NF-κB were assessed. Molecular docking studies of PTX on TGFßR-1 and TAK1 were also executed. CIS induced TGF-ß1, with down-regulation of microRNA-let-7b and -26b, and up-regulation of microRNA-34a. TGFßR-1, TAK1, and mTOR levels were increased, while LC3-II level was decreased. PTX significantly protected renal cells against CIS-induced changes as indicated by reverting the level of the investigated parameters, while exhibiting an antagonistic effect on TGFßR-1 and TAK1. Our results postulate a possible role of epigenetic regulation of CIS-induced nephrotoxicity through the investigated microRNAs proposing them as potential future targets for controlling this serious toxicity. PTX was able to shield CIS-induced toxicity possibly through blocking TGF-ß pathway, while promoting autophagy in a TAK1 independent manner with the involvement of the examined microRNAs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/metabolismo , Pentoxifilina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sítios de Ligação , Cisplatino/toxicidade , Nefropatias/induzido quimicamente , MAP Quinase Quinase Quinases/genética , Masculino , MicroRNAs/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Distribuição Aleatória , Ratos , Serina-Treonina Quinases TOR/genética , Fator de Crescimento Transformador beta/genética
8.
Brain Behav Immun ; 80: 227-237, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872089

RESUMO

While the advent of combination antiretroviral therapy (cART) has dramatically increased the lifespan of people living with HIV-1 paradoxically, the prevalence of NeuroHIV in people treated with cART is on the rise. It has been well documented that despite the effectiveness of cART in suppressing viremia, CNS continues to harbor viral reservoirs with persistent low-level virus replication. This, in turn, leads to the presence and accumulation of early viral protein - HIV-1 Tat, that is a well-established cytotoxic agent. In the current study, we demonstrated that exposure of mouse microglia to HIV-1 Tat resulted both in a dose- and time-dependent upregulation of miRNA-34a, with concomitant downregulation of NLRC5 (a negative regulator of NFκB signaling) expression. Using bioinformatics analyses and Argonaute immunoprecipitation assay NLRC5 was identified as a novel target of miRNA-34a. Transfection of mouse primary microglia with miRNA-34a mimic significantly downregulated NLRC5 expression, resulting in increased expression of NFκB p65. In contrast, transfection of cells with miRNA-34a inhibitor upregulated NLRC5 levels. Using pharmacological approaches, our findings showed that HIV-1 Tat-mediated microglial activation involved miRNA-34a-mediated downregulation of NLRC5 with concomitant activation of NFκB signaling. Reciprocally, inhibition of miRNA-34a blocked HIV-1 Tat-mediated microglial activation. In summary, our findings identify yet another novel mechanism of HIV-1 Tat-mediated activation of microglia involving the miRNA-34a-NLRC5-NFκB axis. These in vitro findings were also validated in the medial prefrontal cortices of HIV-1 transgenic rats as well as in SIV-infected rhesus macaques. Overall, these findings reveal the involvement of miRNA-34a-NLRC5-NFκB signaling axis in HIV-1 Tat-mediated microglial inflammation.


Assuntos
Encefalite/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Feminino , Macaca mulatta , Masculino , Córtex Pré-Frontal/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem
9.
Bioorg Chem ; 91: 103165, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419642

RESUMO

MicroRNAs are a ubiquitous class of non-coding RNAs able to regulate gene expression in diverse biological processes. Widespread miRNAs deregulation was reported in numerous diseases including cancer, with several miRNAs playing oncogenic and/or tumor suppressive role by targeting multiple mRNAs simultaneously. Based on these findings, miRNAs have emerged as promising therapeutic tools for cancer treatment. Herein, for the first time, peptide nucleic acids (PNAs) were studied to develop a new class of molecules able to target 3'UTR on MYCN mRNA without a fully complementary base pairing sequence (as miRNAs). For our proof of concept study we have selected as a model the miRNA-34a, which acts as a tumor suppressor in a number of cancers including neuroblastoma. In particular, miRNA-34a is a direct regulator of MYCN oncogene, whose overexpression is a prominent biomarker for the highly aggressive neuroblastoma phenotype. The design and synthesis of three PNA-based oligomers of different length was described, and their interaction with two binding sites on the target MYCN mRNA was investigated by molecular dynamics simulation, and spectroscopic techniques (CD, UV). Intake assay and confocal microscopy of PNA sequences were also carried out in vitro on neuroblastoma Kelly cells. Despite the presence of multiple mismatches, the PNA/RNA hetero duplexes retain very interesting features in terms of stability, affinity as well as of cellular uptake.


Assuntos
Proliferação de Células , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Ácidos Nucleicos Peptídicos/farmacologia , RNA Mensageiro/antagonistas & inibidores , Química Computacional , Humanos , Microscopia Confocal , Simulação de Dinâmica Molecular , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Ácidos Nucleicos Peptídicos/síntese química , RNA Mensageiro/genética , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533227

RESUMO

Cardiovascular complications are a major leading cause of mortality in patients suffering from type 2 diabetes mellitus (T2DM). Vascular endothelial dysfunction is a core pathophysiological event in the early stage of T2DM and eventually leads to cardiovascular disease. Vaccarin (VAC), an active flavonoid glycoside extracted from vaccariae semen, exhibits extensive biological activities including vascular endothelial cell protection effects. However, little is known about whether VAC is involved in endothelial dysfunction regulation under high glucose (HG) or hyperglycemia conditions. Here, in an in vivo study, we found that VAC attenuated increased blood glucose, increased glucose and insulin tolerance, relieved the disorder of lipid metabolism and oxidative stress, and improved endothelium-dependent vasorelaxation in STZ/HFD-induced T2DM mice. Furthermore, in cultured human microvascular endothelial cell-1 (HMEC-1) cells, we showed that pretreatment with VAC dose-dependently increased nitric oxide (NO) generation and the phosphorylation of eNOS under HG conditions. Mechanistically, VAC-treated HMEC-1 cells exhibited higher AMPK phosphorylation, which was attenuated by HG stimulation. Moreover, HG-triggered miRNA-34a upregulation was inhibited by VAC pretreatment, which is in accordance with pretreatment with AMPK inhibitor compound C (CC). In addition, both reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) and VAC abolished HG-evoked dephosphorylation of AMPK and eNOS, increased miRNA-34a expression, and decreased NO production. These results suggest that VAC impedes HG-induced endothelial dysfunction via inhibition of the ROS/AMPK/miRNA-34a/eNOS signaling cascade.


Assuntos
Angiopatias Diabéticas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glicosídeos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Modelos Animais de Doenças , Glicosídeos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , MicroRNAs , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Substâncias Protetoras/química , Espécies Reativas de Oxigênio/metabolismo
11.
Bratisl Lek Listy ; 120(5): 386-391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31113203

RESUMO

AIM: To discuss the effects and mechanism of microRNA-34a in cell apoptosis induced by osteoarthritis. METHODS: Collection of the normal and osteoarthritis synovial tissues and measurements of the miRNA-34a and TGIF2 gene expression. In the cell experiment, the cells were divided into Control, Blank and miRNA inhibitor group. The cell proliferation and apoptosis of the different groups were measured by MTT and flow cytometry and the TGIF2 protein expression in the different groups was evaluated by WB assay. The correlation between TGIF2 and miRNA-34a was analyzed by Double luciferase experiment. RESULTS: Compared with normal synovial tissues, the miRNA-34a gene expression was significantly up-regulated and TGIF2 gene expression was significantly suppressed in osteoarthritis synovial tissues (p < 0.001, respectively). The cell proliferation was significantly depressed and the cell apoptosis rate was significantly increased in miRNA inhibitor group compared with the Control group (p < 0.001, respectively). Using the WB assay it was shown that the TGIF2 protein expression of miRNA inhibitor group was significantly suppressed compared with that of Control group (p < 0.01). By Double luciferase assay, TGIF2 gene was one target gene of miRNA-34a. CONCLUSION: miRNA-34a could induce osteoarthritis synovial cell apoptosis via regulation of TGIF2 in vitro (Fig. 6, Ref. 29).


Assuntos
Apoptose , Proteínas de Homeodomínio , MicroRNAs , Osteoartrite , Proteínas Repressoras , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Humanos , MicroRNAs/fisiologia , Osteoartrite/metabolismo , Proteínas Repressoras/fisiologia
12.
BMC Cancer ; 18(1): 12, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298665

RESUMO

BACKGROUND: Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC. METHODS: Gene expression omnibus (GEO) datasets were conducted to identify the difference of miR-34a expression between HCC and corresponding normal tissues and to explore its relationship with HCC clinicopathologic features. The natural language processing (NLP), gene ontology (GO), pathway and network analyses were performed to analyze the genes associated with the carcinogenesis and progression of HCC and the targets of miR-34a predicted in silico. In addition, the integrative analysis was performed to explore the targets of miR-34a which were also relevant to HCC. RESULTS: The analysis of GEO datasets demonstrated that miR-34a was downregulated in HCC tissues, and no heterogeneity was observed (Std. Mean Difference(SMD) = 0.63, 95% confidence intervals(95%CI):[0.38, 0.88], P < 0.00001; Pheterogeneity = 0.08 I2 = 41%). However, no association was found between the expression value of miR-34a and any clinicopathologic characteristics. In the NLP analysis of HCC, we obtained 25 significant HCC-associated signaling pathways. Besides, we explored 1000 miR-34a-related genes and 5 significant signaling pathways in which CCND1 and Bcl-2 served as necessary hub genes. In the integrative analysis, we found 61 hub genes and 5 significant pathways, including cell cycle, cytokine-cytokine receptor interaction, notching pathway, p53 pathway and focal adhesion, which proposed the relevant functions of miR-34a in HCC. CONCLUSION: Our results may lead researchers to understand the molecular mechanism of miR-34a in the diagnosis, prognosis and therapy of HCC. Therefore, the interaction between miR-34a and its targets may promise better prediction and treatment for HCC. And the experiments in vivo and vitro will be conducted by our group to identify the specific mechanism of miR-34a in the progress and deterioration of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Transdução de Sinais
13.
Cell Mol Biol Lett ; 23: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386383

RESUMO

BACKGROUND: Breast cancer is the most prevalent cancer among women, and AXL and MET are the key genes in the PI3K/AKT/mTOR pathway as critical elements in proliferation and invasion of cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of genes. METHODS: Bioinformatic approaches were used to find a miRNA that simultaneously targets both AXL and MET 3'-UTRs. The expression of target miRNA was evaluated in triple-negative (MDA-MB-231) and HER2-overexpressing (SK-BR-3) breast cancer cell lines as well as normal breast cells, MCF-10A, using quantitative real-time PCR. Then, the miRNA was overexpressed in normal and cancer cell lines using a lentiviral vector system. Afterwards, effects of overexpressed miRNA on the expression of AXL and MET genes were evaluated using quantitative real-time PCR. RESULTS: By applying bioinformatic software and programs, miRNAs that target the 3'-UTR of both AXL and MET mRNAs were determined, and according to the scores, miR-34a was selected for further analyses. The expression level of miR-34a in MDA-MB-231 and SK-BR-3 was lower than that of MCF-10A. Furthermore, AXL and MET expression in SK-BR-3 and MDA-MB-231 was lower and higher, respectively, than that of MCF-10A. After miR-34a overexpression, MET and AXL were downregulated in MDA-MB-231. In addition, MET was downregulated in SK-BR-3, while AXL was upregulated in this cell line. CONCLUSIONS: These findings may indicate that miR-34a is an oncogenic miRNA, downregulated in the distinct breast cancer subtypes. It also targets MET and AXL 3'-UTRs in triple-negative breast cancer. Therefore, it can be considered as a therapeutic target in this type of breast cancer.


Assuntos
Biologia Computacional/métodos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Receptor Tirosina Quinase Axl
14.
Phytother Res ; 32(7): 1364-1372, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29577459

RESUMO

This study was designed to investigate the precancerous lesions of gastric carcinoma (PLGC)-reversing mechanisms of astragaloside IV (ASIV) in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PLGC rats. All rats were sacrificed after 10-week treatment. Gastric tissue was analyzed by using histopathology and electron microscope. To be fully evidenced, LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a were detected by Western blotting and Real-time Quantitative polymerase chain reaction (RT-qPCR). As histopathology and electron microscope showed, it can be clearly observed that the area of dysplasia was reduced in ASIV groups, indicating that MNNG-induced PLGC was markedly reversed by ASIV. Moreover, compared with model group, a significant decrease in gene expressions of LDHA, MCT1, MCT4, HIF-1α, CD147, and TIGAR was observed whereas miRNA-34a level was increased in ASIV groups. A significant up-regulation induced by MNNG in protein levels of LDHA, MCT1, MCT4, HIF-1α, and CD147 was attenuated in rats treated with ASIV. In contrast, the decreased expression of TIGAR was restored by ASIV. Interestingly, up-regulation of p53 expression induced by MNNG was further increased in ASIV groups. In brief, these results implied that abnormal glycolysis was relieved by ASIV via regulation of the expressions of LDHA, p53, TIGAR, MCT1, MCT4, HIF-1α, CD147, and miRNA-34a.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Glicólise/fisiologia , Saponinas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Triterpenos/uso terapêutico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia , Neoplasias Gástricas/patologia , Triterpenos/farmacologia
15.
Small ; 12(35): 4837-4848, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27432595

RESUMO

Dual stimuli-sensitive mixed polymeric micelles (MM) are developed for co-delivery of the endogenous tumor suppressor miRNA-34a and the chemotherapeutic agent doxorubicin (Dox) into cancer cells. The novelty of the system resides in two stimuli-sensitive prodrugs, a matrix metalloproteinase 2 (MMP2)-sensitive Dox conjugate and a reducing agent (glutathione, GSH)-sensitive miRNA-34a conjugate, self-assembled in a single particle decorated with a polyethylene glycol corona for longevity, and a cell-penetrating peptide (TATp) for enhanced intracellular delivery. The MMP2-sensitivity of the system results in threefold higher cytotoxicity in MMP2-overexpressing HT1080 cells compared to low MMP2-expressing MCF7 cells. Cellular internalization of Dox increases by more than 70% after inclusion of TATp to the formulation. MMP2-sensitive MM also inhibits proliferation and migration of HT1080 cells. Moreover, GSH-sensitive MM allows for an efficient downregulation of Bcl2, survivin, and notch1 (65%, 55%, and 46%, respectively) in HT1080 cells. Combination of both conjugates in dual sensitive MM reduces HT1080 cell viability to 40% and expression of Bcl2 and survivin. Finally, 50% cell death is observed in 3D models of tumor mass. The results confirm the potential of the MM to codeliver miRNA-34a and doxorubicin triggered by dual stimuli inherent of tumor tissues.


Assuntos
Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Micelas , MicroRNAs/administração & dosagem , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Polímeros/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
16.
J Mol Cell Cardiol ; 89(Pt A): 75-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493107

RESUMO

AIMS: We have recently reported that microRNA-34a (miR-34a) regulates vascular smooth muscle cell (VSMC) differentiation from stem cells in vitro and in vivo. However, little is known about the functional involvements of miR-34a in VSMC functions and vessel injury-induced neointima formation. In the current study, we aimed to establish the causal role of miR-34a and its target genes in VSMC proliferation, migration and neointima lesion formation. METHODS AND RESULTS: Various pathological stimuli regulate miR-34a expression in VSMCs through a transcriptional mechanism, and the P53 binding site is required for miR-34a gene regulation by these stimuli. miR-34a over-expression in serum-starved VSMCs significantly inhibited VSMC proliferation and migration, while knockdown of miR-34a dramatically promoted VSMC proliferation and migration, respectively. Notch homolog 1 (Notch1), a well-reported regulator in VSMC functions and arterial remodeling, was predicted as one of the top targets of miR-34a by using several computational miRNA target prediction tools, and was negatively regulated by miR-34a in VSMCs. Luciferase assay showed miR-34a substantially repressed wild type Notch1-3'-UTR-luciferase activity in VSMCs, but not mutant Notch1-3'-UTR-luciferease reporter, confirming the Notch1 is the functional target of miR-34a in VSMCs. Data from co-transfection experiments also revealed that miR-34a inhibited VSMC proliferation and migration through modulating Notch gene expression levels. Importantly, the expression level of miR-34a was significantly down-regulated in injured arteries, and miR-34a perivascular over-expression significantly reduced Notch1 expression levels, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries. CONCLUSION: Our data have demonstrated that miR-34a is an important regulator in VSMC functions and neointima hyperplasia, suggesting its potential therapeutic application for vascular diseases.


Assuntos
Movimento Celular , MicroRNAs/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/genética , Neointima/patologia , Animais , Apoptose , Sequência de Bases , Movimento Celular/genética , Proliferação de Células , Artéria Femoral/lesões , Artéria Femoral/patologia , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Músculo Liso Vascular/patologia , Fenótipo , Receptores Notch/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
17.
Int J Mol Sci ; 16(12): 30105-16, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26694372

RESUMO

Of the approximately ~2.65 × 10³ mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset-about 35-40-are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA-mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer's disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , MicroRNAs/metabolismo , Transdução de Sinais/genética , Regiões 3' não Traduzidas/genética , Regulação para Baixo/genética , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Seleção Genética , Regulação para Cima/genética
18.
Life Sci ; 353: 122936, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094904

RESUMO

Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population. AIM: We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement. MATERIALS AND METHODS: Thirty old male Wistar rats were allocated randomly into 3 groups: Control, DF and Mel-DF groups. KEY FINDINGS: Melatonin provided nephroprotective effects against DF-induced AKI via attenuating the expression of renal miR-34a and subsequently promoting the signaling of Nrf2/HO-1 with elevation of the antioxidant defense capacity and suppressing NLRP3 inflammasomes. Melatonin alleviated DF-induced hypernatremia via decreasing the ENaC expression. Renal histopathological examination revealed significant reduction in vascular congestion, mononuclear infiltration, glomerulo-tubular damage, fibrosis and TNF-α optical density. SIGNIFICANCE: It can be assumed that melatonin is a promising safe therapeutic agent in controlling DF-induced AKI in elderly.


Assuntos
Injúria Renal Aguda , Anti-Inflamatórios não Esteroides , Diclofenaco , Melatonina , Estresse Oxidativo , Ratos Wistar , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo
19.
Int Immunopharmacol ; 127: 111369, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101219

RESUMO

Liraglutide (LIRA), a drug used to treat type 2 diabetes mellitus that belongs to the glucagon-like peptide-1 class, has recently drawn attention for its potential cardioprotective properties because of its anti-oxidative and anti-inflammatory properties. This current investigation was designed to assess the impact of LIRA on myocardial injury induced by isoproterenol (ISO). The experiment included 24 male Wistar rats in total, and they were divided into four groups: Control, LIRA (200 µg/kg/12 hrs., S.C.), ISO (85 mg/kg, S.C.), and ISO + LIRA. To assess the results, various biochemical and histopathological analyses were carried out. The findings showed elevated serum enzyme levels, a sign of cardiac injury. ISO-treated rats showed an upregulation of oxidative stress and inflammatory biomarkers like MDA, MPO, nitrites, NADPH oxidase, TNF-α, IL-1ß, IL-6, 8-Hydroxyguanosine (8-OHdG), and TGF-ß, as well as altered gene expressions like TLR-1 and miRNA-34a-5p. According to western blotting analysis, protein levels of AKT, PI3K, and mTOR were obviously enhanced. Additionally, ISO-treated samples showed altered tissue morphology, elevated caspase 3, and decreased Bcl2 concentrations. The levels of these dysregulated parameters were significantly normalized by LIRA therapy, demonstrating its cardioprotective function against ISO-induced myocardial injury in rats. This protective mechanism was linked to anti-inflammatory properties, redox balance restoration, and modulation of the miRNA-34a-5p/TGF-ß pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína HMGB1 , MicroRNAs , Ratos , Masculino , Animais , Isoproterenol , Proteínas Proto-Oncogênicas c-akt/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Liraglutida/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína HMGB1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , MicroRNAs/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA