Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36677185

RESUMO

The miniaturization of tools is an important step in human evolution to create faster devices as well as precise micromachines. Studies around this topic have allowed the creation of small-scale objects capable of a wide range of deformation to achieve complex tasks. Molecular arrangements have been investigated through liquid crystal polymer (LCP) to program such a movement. Smart polymers and hereby liquid crystal matrices are materials of interest for their easy structuration properties and their response to external stimuli. However, up until very recently, their employment at the microscale was mainly limited to 2D structuration. Among the numerous issues, one concerns the ability to 3D structure the material while controlling the molecular orientation during the polymerization process. This review aims to report recent efforts focused on the microstructuration of LCP, in particular those dealing with 3D microfabrication via two-photon polymerization (TPP). Indeed, the latter has revolutionized the production of 3D complex micro-objects and is nowadays recognized as the gold standard for 3D micro-printing. After a short introduction highlighting the interest in micromachines, some basic principles of liquid crystals are recalled from the molecular aspect to their implementation. Finally, the possibilities offered by TPP as well as the way to monitor the motion into the fabricated microrobots are highlighted.

2.
Materials (Basel) ; 14(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34442951

RESUMO

Low-rigidity thin-walled parts are components of many machines and devices, including high precision electric micro-machines used in control and tracking systems. Unfortunately, traditional machining methods used for machining such types of parts cause a significant reduction in efficiency and in many cases do not allow obtaining the required accuracy parameters. Moreover, they also fail to meet modern automation requirements and are uneconomical and inefficient. Therefore, the aim of provided studies was to investigate the dependency of cutting forces on cutting parameters and flank wear, as well as changes in cutting forces induced by changes in heating current density and machining parameters during the turning of thin-walled parts. The tests were carried out on a specially designed and constructed turning test stand for measuring cutting forces and temperature at specific cutting speed, feed rate, and depth of cut values. As part of the experiments, the effect of cutting parameters and flank wear on cutting forces, and the effect of heating current density and turning parameters on changes in cutting forces were analyzed. Moreover, the effect of cutting parameters (depth of cut, feed rate, and cutting speed) on temperature has been determined. Additionally, a system for controlling electro-contact heating and investigated the relationship between changes in cutting forces and machining time in the operations of turning micro-machine casings with and without the use of the control system was developed. The obtained results show that the application of an electro-contact heating control system allows to machine conical parts and semi-finished products at lower cutting forces and it leads to an increase in the deformation of the thin-walled casings caused by runout of the workpiece.

3.
Micromachines (Basel) ; 8(10)2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30400490

RESUMO

Laser-induced-plasma-assisted ablation (LIPAA) is a promising micro-machining method that can fabricate microstructure on hard and transparent double-polished single crystal sapphire (SCS). While ablating, a nanosecond pulse 1064 nm wavelength laser beam travels through the SCS substrate and bombards the copper target lined up behind the substrate, which excites the ablating plasma. When laser fluence rises and is above the machining threshold of copper but below that of SCS, the kinetic energy of the copper plasma generated from the bombardment is mainly determined by the laser fluence, the repetition rate, and the substrate-to-target distance. With a lower repetition rate, SCS becomes metallized and gains conductivity. When micro-machining SCS with a pulsed laser are controlled by properly controlling laser machining parameters, such as laser fluence, repetition rate, and substrate-to-target distance, LIPAA can ablate certain line widths and depths of the microstructure as well as the resistance of SCS. On the contrary, conductivity resistance of metalized sapphire depends on laser parameters and distance in addition to lower repetition rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA