RESUMO
Roots of healthy plants are inhabited by soil-derived bacteria, fungi, and oomycetes that have evolved independently in distinct kingdoms of life. How these microorganisms interact and to what extent those interactions affect plant health are poorly understood. We examined root-associated microbial communities from three Arabidopsis thaliana populations and detected mostly negative correlations between bacteria and filamentous microbial eukaryotes. We established microbial culture collections for reconstitution experiments using germ-free A. thaliana. In plants inoculated with mono- or multi-kingdom synthetic microbial consortia, we observed a profound impact of the bacterial root microbiota on fungal and oomycetal community structure and diversity. We demonstrate that the bacterial microbiota is essential for plant survival and protection against root-derived filamentous eukaryotes. Deconvolution of 2,862 binary bacterial-fungal interactions ex situ, combined with community perturbation experiments in planta, indicate that biocontrol activity of bacterial root commensals is a redundant trait that maintains microbial interkingdom balance for plant health.
Assuntos
Arabidopsis/microbiologia , Consórcios Microbianos , Raízes de Plantas/microbiologia , Arabidopsis/fisiologia , Bactérias/patogenicidade , Fungos/patogenicidade , SimbioseRESUMO
Soil-dwelling microbes are the principal inoculum for the root microbiota, but our understanding of microbe-microbe interactions in microbiota establishment remains fragmentary. We tested 39,204 binary interbacterial interactions for inhibitory activities in vitro, allowing us to identify taxonomic signatures in bacterial inhibition profiles. Using genetic and metabolomic approaches, we identified the antimicrobial 2,4-diacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites whose combined functions explain most of the inhibitory activity of the strongly antagonistic Pseudomonas brassicacearum R401. Microbiota reconstitution with a core of Arabidopsis thaliana root commensals in the presence of wild-type or mutant strains revealed a root niche-specific cofunction of these exometabolites as root competence determinants and drivers of predictable changes in the root-associated community. In natural environments, both the corresponding biosynthetic operons are enriched in roots, a pattern likely linked to their role as iron sinks, indicating that these cofunctioning exometabolites are adaptive traits contributing to pseudomonad pervasiveness throughout the root microbiota.
Assuntos
Arabidopsis , Microbiota , Bactérias/genética , Microbiota/genética , Simbiose , Arabidopsis/genética , Interações Microbianas , Raízes de Plantas/genética , Microbiologia do SoloRESUMO
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Assuntos
Doenças do Recém-Nascido , Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Feminino , Animais , Recém-Nascido , Humanos , Gravidez , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae , Antibacterianos , Rede Social , Complicações Infecciosas na Gravidez/microbiologiaRESUMO
Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.
Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota , Plantas/microbiologia , Microbiologia do Solo , RizosferaRESUMO
BACKGROUND: Thermophilic composting is a promising method of sanitizing pathogens in manure and a source of agriculturally important thermostable enzymes and microorganisms from organic wastes. Despite the extensive studies on compost prokaryotes, shifts in microbial profiles under the influence of various green materials and composting days are still not well understood, considering the complexity of the green material sources. Here, the effect of regimens of green composting material on the diversity, abundance, and metabolic capacity of prokaryotic communities in a thermophilic compost environment was examined. METHODS: Total community 16S rRNA was recovered from triplicate compost samples of Lantana-based, Tithonia-based, Grass-based, and mixed (Lantana + Tithonia + Grass)- based at 21, 42, 63, and 84 days of composting. The 16S rRNA was sequenced using the Illumina Miseq platform. Bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 (DADA2) R version 4.1 and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) pipelines for community structure and metabolic profiles, respectively. In DADA2, prokaryotic classification was done using the Refseq-ribosomal database project (RDP) and SILVA version 138 databases. RESULTS: Our results showed apparent differences in prokaryotic community structure for total diversity and abundance within the four compost regimens and composting days. The study showed that the most prevalent phyla during composting included Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, and Proteobacteria. Additionally, there were differences in the overall diversity of metabolic pathways but no significant differences among the various compost treatments on major metabolic pathways like carbohydrate biosynthesis, carbohydrate degradation, and nitrogen biosynthesis. CONCLUSION: Various sources of green material affect the succession of compost nutrients and prokaryotic communities. The similarity of amounts of nutrients, such as total Nitrogen, at the end of the composting process, despite differences in feedstock material, indicates a significant influence of composting days on the stability of nutrients during composting.
Assuntos
Compostagem , RNA Ribossômico 16S , Filogenia , Células Procarióticas , CarboidratosRESUMO
Biotic and abiotic interactions shape natural microbial communities. The mechanisms behind microbe-microbe interactions, particularly those protein based, are not well understood. We hypothesize that released proteins with antimicrobial activity are a powerful and highly specific toolset to shape and defend plant niches. We have studied Albugo candida, an obligate plant parasite from the protist Oomycota phylum, for its potential to modulate the growth of bacteria through release of antimicrobial proteins into the apoplast. Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabidopsis thaliana samples revealed an abundance of negative correlations between Albugo and other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves combined with machine learning predictors enabled the selection of antimicrobial candidates for heterologous expression and study of their inhibitory function. We found for three candidate proteins selective antimicrobial activity against Gram-positive bacteria isolated from A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stability of the community structure. We could ascribe the antibacterial activity of the candidates to intrinsically disordered regions and positively correlate it with their net charge. This is the first report of protist proteins with antimicrobial activity under apoplastic conditions that therefore are potential biocontrol tools for targeted manipulation of the microbiome.
Assuntos
Anti-Infecciosos , Arabidopsis , Oomicetos , Parasitos , Animais , Arabidopsis/microbiologia , Plantas , Anti-Infecciosos/farmacologia , Bactérias , Folhas de Planta/microbiologiaRESUMO
The transition time during which a virus leaves its host and infects the next susceptible host is critical for virus survival. Enterovirus 71 (EV71) is stable in aqueous environments, but its molecular interactions with bacteria and their biofilms are not well-established. Helicobacter pylori is a highly successful gut bacterial pathogen, with its capacity to form biofilms being linked to its transmission. Given that both are gut-associated microbes, we hypothesized that biofilms formed by H. pylori may play a significant role in the survival of EV71 in the external environment. In this study, we examine the interactions of EV71 with the preformed biofilm of H. pylori to mimic its natural state in the environment. Immunofluorescence confocal microscopy and scanning electron microscopy revealed that EV71 particles persisted for up to 10 days when incubated with the H. pylori biofilm. Furthermore, the presence of the H. pylori biofilm significantly augmented viral viability, as verified through virus plaque assays. Interestingly, the viability of EV71 was dependent on the quantity of H. pylori biofilm formation. Thus, two H. pylori strains able to generate large amounts of biofilm could facilitate EV71 viability for up to 17 days, whereas two other H. pylori strains that produced moderate or low quantities of biofilm could not prolong virus viability. It is interesting that biofilm contains N-acetyl-glucosamine and glycosaminoglycan, and that EV71 has binding affinity to cell-surface heparan sulfate glycosaminoglycan, which acts as an EV71 attachment receptor. The synergistic ability of H. pylori biofilm to promote EV71 viability for extended periods implies that H. pylori biofilm may serve as an additional pathway of EV71 transmission.
Assuntos
Enterovirus Humano A , Helicobacter pylori , Viabilidade Microbiana , Biofilmes , GlicosaminoglicanosRESUMO
Humans are considered "superorganisms," harboring a diverse microbial collective that outnumbers human cells 10 to 1. Complex and gravely understudied host- and microbe-microbe interactions-the product of millions of years of host-microbe coevolution-govern the superorganism in almost every aspect of life functions and overall well-being. Abruptly disrupting these interactions via extrinsic factors has undesirable consequences for the host. On the other hand, supplementing commensal or beneficial microbes may mitigate perturbed interactions or enhance the interactive relationships that ultimately benefit all parties. Hence, immense efforts have focused on dissecting the innumerable host- and microbe-microbe relationships to characterize if a "positive" or "negative" interaction is at play and to exploit such behavior for broader implications. For example, microbiome research has worked to identify and isolate naturally antipathogenic microbes that may offer therapeutic potential either in a direct, one-on-one application or by leveraging its unique metabolic properties. However, the discovery and isolation of such desired therapeutic microbes from complex microbiota have proven challenging. Currently, there is no conventional technique to universally and functionally screen for these microbes. With this said, we first describe in this review the historical (probiotics) and current (fecal microbiota or defined consortia) perspectives on therapeutic microbes, present the discoveries of therapeutic microbes through exploiting microbe-microbe and host-microbe interactions, and detail our team's efforts in discovering therapeutic microbes via our novel microbiome screening platform. We conclude this minireview by briefly discussing challenges and possible solutions with therapeutic microbes' applications and paths ahead for discovery.
Assuntos
Microbiota , Probióticos , Fezes , Interações entre Hospedeiro e Microrganismos , Humanos , Interações MicrobianasRESUMO
A diverse lineage of microorganisms inhabits plant roots and interacts with plants in various ways. Further, these microbes communicate and interact with each other within the root microbial community. These symbioses add an array of influences, such as plant growth promotion or indirect protection to the host plant. Omics technology and genetic manipulation have been applied to unravel these interactions. Recent studies probed plants' control over microbes. However, the activity of the root microbial community under host influence has not been elucidated enough. In this mini-review, we discussed the recent advances and limits of omics technology and genetics for dissecting the activity of the root-associated microbial community. These materials may help us formulate the correct experimental plans to capture the entire molecular mechanisms of the plant-microbe interaction.
Assuntos
Microbiota , Raízes de Plantas , Interações Microbianas , Microbiota/genética , Plantas , SimbioseRESUMO
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Assuntos
Sideróforos , Interação Social , Adaptação Fisiológica , Humanos , Filogenia , Pseudomonas/genética , Pseudomonas aeruginosaRESUMO
When Streptomyces violaceoruber grows together with Streptomyces sp. MG7-G1, it reacts with strongly induced droplet production on its aerial mycelium. Initially the metabolite profile of droplets from S. violaceoruber in co-culture with Streptomyces sp. MG7-G1 was compared to samples from S. violaceoruber in single-culture by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Then, the exudate from agar plates of co-cultures and single cultures (after freezing and thawing) was also analysed. Several compounds were only observed when S. violaceoruber was grown in co-culture. Based on their high-resolution ESI mass spectra and their comparable retention times to the calcium-dependent antibiotics (CDAs) produced by S. violaceoruber, the new compounds were suspected to be deacylated calcium-dependent antibiotics (daCDAs), lacking the 2,3-epoxyhexanoyl residue of CDAs. This was verified by detailed analysis of the MS/MS spectra of the daCDAs in comparison to the CDAs. The major CDA compounds present in calcium ion-supplemented agar medium of co-cultures were daCDAs, thus suggesting that Streptomyces sp. MG7-G1 expresses a deacylase that degrades CDAs.
Assuntos
Antibacterianos/metabolismo , Cálcio/metabolismo , Técnicas de Cocultura , Streptomyces/química , Acilação , Antibacterianos/química , Cálcio/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Conformação Molecular , Streptomyces/metabolismoRESUMO
Bacteria have a remarkable ability to survive, persist, and ultimately adapt to environmental challenges. A ubiquitous environmental hazard is DNA damage, and most bacteria have evolved a network of genes to combat genotoxic stress. This network is known as the SOS response and aids in bacterial survival by regulating genes involved in DNA repair and damage tolerance. Recently, the SOS response has been shown to play an important role in bacterial pathogenesis, and yet the role of the SOS response in nonpathogenic organisms and in physiological settings remains underexplored. Using a commensal Escherichia coli strain, MP1, we showed that the SOS response plays a vital role during colonization of the murine gut. In an unperturbed environment, the SOS-off mutant is impaired for stable colonization relative to a wild-type strain, suggesting the presence of genotoxic stress in the mouse gut. We evaluated the possible origins of genotoxic stress in the mouse gut by examining factors associated with the host versus the competing commensal organisms. In a dextran sulfate sodium (DSS) colitis model, the SOS-off colonization defect persisted but was not exacerbated. In contrast, in a germ-free model, the SOS-off mutant colonized with efficiency equal to that seen with the wild-type strain, suggesting that competing commensal organisms might be a significant source of genotoxic stress. This report extends our understanding of the importance of a functional SOS response for bacterial fitness in the context of a complex physiological environment and highlights the SOS response as a possible mechanism that contributes to ongoing genomic changes, including potential antibiotic resistance, in the microbiome of healthy hosts.
Assuntos
Dano ao DNA/fisiologia , Escherichia coli/patogenicidade , Trato Gastrointestinal/microbiologia , Resposta SOS em Genética/fisiologia , Animais , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The type VI secretion system (T6SS) is used by gram-negative bacteria to translocate effectors that can antagonize other bacterial cells. Models predict the variation in collections of effector and cognate immunity genes determine competitiveness and can affect the dynamics of populations and communities of bacteria. However, the outcomes of competition cannot be entirely explained by compatibility of effector-immunity (EI) pairs. Here, we characterized the diversity of T6SS loci of plant-pathogenic Agrobacterium tumefaciens and showed that factors other than EI pairs can impact interbacterial competition. All examined strains encode T6SS active in secretion and antagonism against Escherichia coli. The spectra of EI pairs as well as compositions of gene neighborhoods are diverse. Almost 30 in-planta competitions were tested between different genotypes of A. tumefaciens. Fifteen competitions between members of different species-level groups resulted in T6SS-dependent suppression in in-planta growth of prey genotypes. In contrast, ten competitions between members within species-level groups resulted in no significant effect on the growth of prey genotypes. One strain was an exceptional case and, despite encoding a functional T6SS and toxic effector protein, could not compromise the growth of the four tested prey genotypes. The data suggest T6SS-associated EI pairs can influence the competitiveness of strains of A. tumefaciens, but genetic features have a significant role on the efficacy of interbacterial antagonism.
Assuntos
Agrobacterium tumefaciens , Variação Genética , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo VI , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/farmacologia , Escherichia coli/efeitos dos fármacos , Sistemas de Secreção Tipo VI/metabolismoRESUMO
BACKGROUND: Plants have evolved intimate interactions with soil microbes for a range of beneficial functions including nutrient acquisition, pathogen resistance and stress tolerance. Further understanding of this system is a promising way to advance sustainable agriculture by exploiting the versatile benefits offered by the plant microbiome. The rhizosphere is the interface between plant and soil, and functions as the first step of plant defense and root microbiome recruitment. It features a specialized microbial community, intensive microbe-plant and microbe-microbe interactions, and complex signal communication. To decipher the rhizosphere microbiome assembly of soybean (Glycine max), we comprehensively characterized the soybean rhizosphere microbial community using 16S rRNA gene sequencing and evaluated the structuring influence from both host genotype and soil source. RESULTS: Comparison of the soybean rhizosphere to bulk soil revealed significantly different microbiome composition, microbe-microbe interactions and metabolic capacity. Soil type and soybean genotype cooperatively modulated microbiome assembly with soil type predominantly shaping rhizosphere microbiome assembly while host genotype slightly tuned this recruitment process. The undomesticated progenitor species, Glycine soja, had higher rhizosphere diversity in both soil types tested in comparison to the domesticated soybean genotypes. Rhizobium, Novosphingobium, Phenylobacterium, Streptomyces, Nocardioides, etc. were robustly enriched in soybean rhizosphere irrespective of the soil tested. Co-occurrence network analysis revealed dominant soil type effects and genotype specific preferences for key microbe-microbe interactions. Functional prediction results demonstrated converged metabolic capacity in the soybean rhizosphere between soil types and among genotypes, with pathways related to xenobiotic degradation, plant-microbe interactions and nutrient transport being greatly enriched in the rhizosphere. CONCLUSION: This comprehensive comparison of the soybean microbiome between soil types and genotypes expands our understanding of rhizosphere microbe assembly in general and provides foundational information for soybean as a legume crop for this assembly process. The cooperative modulating role of the soil type and host genotype emphasizes the importance of integrated consideration of soil condition and plant genetic variability for future development and application of synthetic microbiomes. Additionally, the detection of the tuning role by soybean genotype in rhizosphere microbiome assembly provides a promising way for future breeding programs to integrate host traits participating in beneficial microbiota assembly.
Assuntos
Bactérias/isolamento & purificação , Glycine max/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Genótipo , Microbiota , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologiaRESUMO
Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.
Assuntos
Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Salmonella typhimurium/fisiologia , Solanum lycopersicum/microbiologia , Expressão Gênica/fisiologia , Genes Bacterianos/fisiologia , Salmonella typhimurium/genéticaRESUMO
There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.
Assuntos
Streptomyces/fisiologia , Agentes de Controle Biológico , Endófitos/fisiologia , Controle Biológico de Vetores , Desenvolvimento Vegetal/fisiologiaRESUMO
Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.
Assuntos
Amônia/metabolismo , Gotículas Lipídicas/química , Streptomyces/química , Amônia/análise , Amônia/química , Bioensaio , Difusão , Gases/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Compostos Orgânicos/química , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismoRESUMO
Over evolutionary time, Wolbachia has been repeatedly transferred between host species contributing to the widespread distribution of the symbiont in arthropods. For novel infections to be maintained, Wolbachia must infect the female germ line after being acquired by horizontal transfer. Although mechanistic examples of horizontal transfer exist, there is a poor understanding of factors that lead to successful vertical maintenance of the acquired infection. Using Anopheles mosquitoes (which are naturally uninfected by Wolbachia) we demonstrate that the native mosquito microbiota is a major barrier to vertical transmission of a horizontally acquired Wolbachia infection. After injection into adult Anopheles gambiae, some strains of Wolbachia invade the germ line, but are poorly transmitted to the next generation. In Anopheles stephensi, Wolbachia infection elicited massive blood meal-induced mortality, preventing development of progeny. Manipulation of the mosquito microbiota by antibiotic treatment resulted in perfect maternal transmission at significantly elevated titers of the wAlbB Wolbachia strain in A. gambiae, and alleviated blood meal-induced mortality in A. stephensi enabling production of Wolbachia-infected offspring. Microbiome analysis using high-throughput sequencing identified that the bacterium Asaia was significantly reduced by antibiotic treatment in both mosquito species. Supplementation of an antibiotic-resistant mutant of Asaia to antibiotic-treated mosquitoes completely inhibited Wolbachia transmission and partly contributed to blood meal-induced mortality. These data suggest that the components of the native mosquito microbiota can impede Wolbachia transmission in Anopheles. Incompatibility between the microbiota and Wolbachia may in part explain why some hosts are uninfected by this endosymbiont in nature.
Assuntos
Anopheles/microbiologia , Wolbachia/crescimento & desenvolvimento , Acetobacteraceae/efeitos dos fármacos , Acetobacteraceae/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Evolução Biológica , Transmissão de Doença Infecciosa , Feminino , Transmissão Vertical de Doenças Infecciosas , Microbiota/efeitos dos fármacos , Óvulo/microbiologia , SimbioseRESUMO
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Assuntos
Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Microbiota/efeitos dos fármacos , Animais , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , HumanosRESUMO
Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens.