Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Exp Parasitol ; 243: 108407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36349579

RESUMO

The emergence of drug-resistant parasites and/or insecticide-resistant mosquito vectors necessitates developing alternative tools that either supplement or replace the conventional malaria control strategies. Trans-infecting the mosquito vector with symbionts that can either compete with a targeted pathogen or manipulate the host biology by reducing its vectorial capacity could be a promising and innovative biological approach for the control of infectious diseases This idea could be utilized to develop a novel and efficient vector control strategy; symbionts are dispersed into vector populations to reduce their ability to transmit human pathogens. Here, we reported the natural existence of Microsporidian (an obligate fungus) in the field-collected An. stephensi mosquito. However, laboratory-reared An. stephensi and An. culicifacies did not exhibit microsporidian infection. Similarly, 16s rRNA PCR identified ∼1kb amplicons in laboratory-reared An. stephensi and An. culicifacies, indicating the presence of naturally residing different bacterial species. DNA sequencing of these amplicons revealed the identities of different bacteria which are not well-characterized in terms of plasmodia-interaction activity in the Indian malaria vector. This article summarizes an overview of the previously studied microbial symbionts for their role in Plasmodium transmission along with a list of new or unexplored symbionts in the disease transmitting mosquito vectors. The summarized information could be utilized to explore such microbial symbionts for their role in Plasmodium-transmission biology in-depth and implementation in the malaria control interventions globally.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Mosquitos Vetores , Anopheles/parasitologia , Malária/prevenção & controle , Malária/parasitologia , RNA Ribossômico 16S/genética , Bactérias
2.
Appl Microbiol Biotechnol ; 105(9): 3393-3410, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33837831

RESUMO

Ambrosia beetles and their microbial communities, housed in specialized structures termed mycangia, represent one of the oldest and most diverse systems of mutualism and parasitism described thus far. Comprised of core filamentous fungal members, but also including bacteria and yeasts, the mycangia represent a unique adaptation that allows beetles to store and transport their source of nutrition. Although perhaps the most ancient of "farmers," the nature of these interactions remains largely understudied, with the exception of a handful of emerging pathosystems, where the fungal partner acts as a potentially devastating tree pathogen. Such virulence is often seen during "invasions," where (invasive) beetles carrying the fungal symbiont/plant pathogen expand into new territories and presumably "naïve" trees. Here, we summarize recent findings on the phylogenetic relationships between beetles and their symbionts and advances in the developmental and genetic characterization of the mechanisms that underlie insect-fungal-plant interactions. Results on genomic, transcriptomic, and metabolomic aspects of these relationships are described. Although many members of the fungal Raffaelea-beetle symbiont genera are relatively harmless to host trees, specialized pathosystems including wilt diseases of laurel and oak, caused by specific subspecies (R. lauricola and R. quercus, in the USA and East Asia, respectively), have emerged as potent plant pathogens capable of killing healthy trees. With the development of genetic tools, coupled to biochemical and microscopic techniques, the ambrosia beetle-fungal symbiont is establishing itself as a unique model system to study the molecular determinants and mechanisms that underlie the convergences of symbioses, mutualism, parasitism, and virulence. KEY POINTS: • Fungal-beetle symbioses are diverse and ancient examples of microbial farming. • The mycangium is a specialized structure on insects that houses microbial symbionts. • Some beetle symbiotic fungi are potent plant pathogens vectored by the insect.


Assuntos
Besouros , Gorgulhos , Ambrosia , Animais , Hong Kong , Filogenia , Simbiose
3.
Mar Drugs ; 19(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925365

RESUMO

Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.


Assuntos
Anti-Infecciosos/farmacologia , Doenças Transmissíveis/veterinária , Doenças dos Peixes/tratamento farmacológico , Poríferos/metabolismo , Drogas Veterinárias/farmacologia , Animais , Anti-Infecciosos/isolamento & purificação , Aquicultura , Doenças Transmissíveis/tratamento farmacológico , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Drogas Veterinárias/isolamento & purificação
4.
Microb Ecol ; 80(3): 718-728, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32488484

RESUMO

Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts-Wolbachia and Rickettsia-in the parasitoid Spalangia endius. We crossed between four S. endius colonies-Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females' developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.


Assuntos
Interações Hospedeiro-Parasita , Rickettsia/fisiologia , Simbiose , Vespas/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Moscas Domésticas/parasitologia , Masculino , Reprodução , Vespas/fisiologia
5.
Appl Microbiol Biotechnol ; 102(14): 5873-5888, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29802479

RESUMO

Significant progress has been made in the biochemical and genetic characterization of the host-pathogen interaction mediated by insect pathogenic fungi, with the most widely studied being the Ascomycetes (Hypocrealean) fungi, Metarhizium robertsii and Beauveria bassiana. However, few studies have examined the consequences and effects of host (insect) microbes, whether compatible or antagonistic, on the development and survival of entomopathogenic fungi. Host microbes can act on the insect cuticular surface, within the gut, in specialized insect microbe hosting structures, and within cells, and they include a wide array of facultative and/or obligate exosymbionts and endosymbionts. The insect microbiome differs across developmental stages and in response to nutrition (e.g., different plant hosts for herbivores) and environmental conditions, including exposure to chemical insecticides. Here, we review recent advances indicating that insect-pathogenic fungi have evolved a spectrum of strategies for exploiting or suppressing host microbes, including the production of antimicrobial compounds that are expressed at discrete stages of the infection process. Conversely, there is increasing evidence that some insects have acquired microbes that may be specialized in the production of antifungal compounds to combat infection by (entomopathogenic) fungi. Consideration of the insect microbiome in fungal insect pathology represents a new frontier that can help explain previously obscure ecological and pathological aspects of the biology of entomopathogenic fungi. Such information may lead to novel approaches to improving the efficacy of these organisms in pest control efforts.


Assuntos
Ascomicetos/fisiologia , Insetos/microbiologia , Animais , Antibiose/fisiologia , Interações Hospedeiro-Patógeno , Microbiota/fisiologia
6.
Proc Natl Acad Sci U S A ; 112(14): 4381-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25713351

RESUMO

Marine sponges are major habitat-forming organisms in coastal benthic communities and have an ancient origin in evolution history. Here, we report significant accumulation of polyphosphate (polyP) granules in three common sponge species of the Caribbean coral reef. The identity of the polyP granules was confirmed by energy-dispersive spectroscopy (EDS) and by the fluorescence properties of the granules. Microscopy images revealed that a large proportion of microbial cells associated with sponge hosts contained intracellular polyP granules. Cyanobacterial symbionts cultured from sponges were shown to accumulate polyP. We also amplified polyphosphate kinase (ppk) genes from sponge DNA and confirmed that the gene was expressed. Based on these findings, we propose here a potentially important phosphorus (P) sequestration pathway through symbiotic microorganisms of marine sponges. Considering the widespread sponge population and abundant microbial cells associated with them, this pathway is likely to have a significant impact on the P cycle in benthic ecosystems.


Assuntos
Cianobactérias/metabolismo , Fósforo/fisiologia , Poríferos/microbiologia , Simbiose , Animais , Proteínas de Bactérias , Biodiversidade , Recifes de Corais , Ecossistema , Florida , Proteínas Luminescentes , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Fósforo/química , Polifosfatos/química , RNA Ribossômico 16S/genética , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A ; 112(8): 2307-13, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25646461

RESUMO

The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach.

8.
Microbiology (Reading) ; 163(12): 1835-1838, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29095686

RESUMO

The fungal pathogen Batrachochytrium dendrobatidis has caused declines and extinctions in hundreds of amphibian species across the world. Virulence varies among and within lineages; the Global Panzootic Lineage (GPL) is the most pathogenic, although there is also variation in lethality among GPL isolates. Amphibians have a number of defences against pathogens, and skin products including the microbiota and host peptides have considerable influence over disease progression. Here we demonstrate that the collective skin products (the mucosome) of two amphibian species show significant variation in their ability to inhibit different globally distributed isolates of GPL. This may in part explain the variation in disease susceptibility of hosts to different strains of B. dendrobatidis. More work is required to identify particular traits associated with mucosomes that confer broad-spectrum inhibition across GPL in order to facilitate the development of prophylaxis and/or treatments for chytridiomycosis in situ.

9.
J Appl Microbiol ; 118(2): 419-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25431341

RESUMO

AIMS: Sessile marine invertebrates engage in a diverse array of beneficial interactions with bacterial symbionts. One feature of some of these relationships is the presence of bioactive natural products that can defend the holobiont from predation, competition or disease. In this study, we investigated the antimicrobial activity and microbial community of a common temperate sponge from coastal North Carolina. METHODS AND RESULTS: The sponge was identified as a member of the genus Haliclona, a prolific source of bioactive natural products, based on its 18S rRNA gene sequence. The crude chemical extract and methanol partition had broad activity against the assayed Gram-negative and Gram-positive pathogenic bacteria. Further fractionation resulted in two groups of compounds with differing antimicrobial activity, primarily against Gram-positive test organisms. There was, however, notable activity against the Gram-negative marine pathogen, Vibrio parahaemolyticus. Microbial community analysis of the sponge and surrounding sea water via denaturing gradient gel electrophoresis (DGGE) indicates that it harbours a distinct group of bacterial associates. CONCLUSIONS: The common temperate sponge, Haliclona sp., is a source of multiple antimicrobial compounds and has some consistent microbial community members that may play a role in secondary metabolite production. SIGNIFICANCE AND IMPACT OF THE STUDY: These data suggest that common temperate sponges can be a source of bioactive chemical and microbial diversity. Further studies may reveal the importance of the microbial associates to the sponge and natural product biosynthesis.


Assuntos
Antibacterianos/farmacologia , Haliclona/microbiologia , Animais , Antibacterianos/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Haliclona/química , Haliclona/genética , Água do Mar/microbiologia
10.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111503

RESUMO

Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.

11.
Environ Sci Pollut Res Int ; 30(3): 6805-6817, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36002791

RESUMO

Ascidians or sea squirts are among the marine taxa with the most introduced species worldwide. These animals have a suite of biological characteristics that contribute to their successful establishment, including long reproductive seasons, rapid growth rates, and resistance to pollution. Here, we sequenced a fragment of the 16S ribosomal RNA gene to characterize symbiont diversity and host-specificity in the solitary species Syela clava and Ascidiella aspersa, and the colonial species Didemnum vexillum. Samples were collected from introduced populations in several marinas and mussel facilities around Ireland, and a marina in New Zealand. Two additional colonial species Botrylloides violaceus and Didemnum sp. were collected in Ireland, and ambient seawater was sampled from both countries for comparison. Data revealed a strong effect of host species and location on prokaryote symbiont composition, consistent with recent ascidian microbiome literature. However, a location effect did not manifest in alpha diversity metrics (e.g., the same ascidian species at different locations exhibited similar diversity) but was evident in beta diversity metrics (greater intra-specific differences across locations than within locations). Location effects were stronger than species effects only for the solitary species (i.e., A. aspersa from New Zealand was more similar to S. clava from New Zealand than to A. aspersa from Ireland). D. vexillum and A. aspersa hosted a high abundance of prokaryotic symbionts that were previously found in other ascidian species, while S. clava symbiotic community was more closely related to bacteria common in the marine environment. Further studies should aim to unravel host-microbe coevolutionary patterns and the microbial role in facilitating host establishment in different habitats.


Assuntos
Microbiota , Urocordados , Animais , Urocordados/microbiologia , Irlanda , Nova Zelândia , Bactérias/genética , Espécies Introduzidas , RNA Ribossômico 16S/genética , Filogenia
12.
Insects ; 14(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36975977

RESUMO

The Asian longhorn beetle (ALB), Anoplophora glabripennis Motschulsky, is a polyphagous xylophage with dozens of reported host tree species. However, the mechanisms by which individuals locate and recognize host plants are still unknown. We summarize the current knowledge of the host plant list, host kairomones, odorant-binding proteins (OBPs) and microbial symbionts of this beetle and their practical applications, and finally discuss the host localization and recognition mechanisms. A total of 209 species (or cultivars) were reported as ALB host plants, including 101 species of higher sensitivity; host kairomones were preferentially bound to ALB recombinant OBPs, including cis-3-hexen-1-ol, δ-3-carene, nonanal, linalool, and ß-caryophyllene. In addition, microbial symbionts may help ALB degrade their host. Complementarity of tree species with different levels of resistance may reduce damage, but trapping effectiveness for adults was limited using a combination of host kairomones and sex pheromones in the field. Therefore, we discuss host location behavior from a new perspective and show that multiple cues are used by ALB to locate and recognize host plants. Further research into host resistance mechanisms and visual signal recognition, and the interaction of sex pheromone synthesis, symbiont microbiota, and host plants may help reveal the host recognition mechanisms of ALBs.

13.
Microorganisms ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110428

RESUMO

Rosenbergiella bacteria have been previously isolated predominantly from floral nectar and identified in metagenomic screenings as associated with bees. Here, we isolated three Rosenbergiella strains from the robust Australian stingless bee Tetragonula carbonaria sharing over 99.4% sequence similarity with Rosenbergiella strains isolated from floral nectar. The three Rosenbergiella strains (D21B, D08K, D15G) from T. carbonaria exhibited near-identical 16S rDNA. The genome of strain D21B was sequenced; its draft genome contains 3,294,717 bp, with a GC content of 47.38%. Genome annotation revealed 3236 protein-coding genes. The genome of D21B differs sufficiently from the closest related strain, Rosenbergiella epipactidis 2.1A, to constitute a new species. In contrast to R. epipactidis 2.1A, strain D21B produces the volatile 2-phenylethanol. The D21B genome contains a polyketide/non-ribosomal peptide gene cluster not present in any other Rosenbergiella draft genomes. Moreover, the Rosenbergiella strains isolated from T. carbonaria grew in a minimal medium without thiamine, but R. epipactidis 2.1A was thiamine-dependent. Strain D21B was named R. meliponini D21B, reflecting its origin from stingless bees. Rosenbergiella strains may contribute to the fitness of T. carbonaria.

14.
3 Biotech ; 12(3): 75, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35251878

RESUMO

Aphid populations were collected on cowpea, dolichos, redgram and black gram from Belagavi and Udupi locations. The samples were shotgun sequenced using the Illumina NovaSeq 6000 system to understand the spatial distribution and community structure of microbiota (especially bacteria) associated with aphids. In the present study, we identified obligatory nutritional symbiont Buchnera aphidicola and facultative symbionts Rickettsia sp. and Bacteroidetes endosymbiont of Geopemphigus sp. in all the aphid samples studied, although in varied abundance. On the other hand, Serratia symbiotica, Arsenophonus sp. and Acinetobacter sp. were only found in aphids on specific host plants, suggesting that host plants might influence the bacterial community structure. Furthermore, our study revealed that microbiota other than bacteria were highly insignificant in the aphid populations. Additionally, functional annotation of aphid metagenomes identified several pathways and enzymes involved in various physiological and ecological functions. Amino acid and vitamin biosynthesis-related pathways were predominant than carbohydrate metabolism, owing to their feeding habit and nutritional requirement. Chaperones related to stress tolerance such as GroEL and DnaK were identified. Enzymes involved in toxic chemical metabolisms such as glutathione transferase, phosphodiesterases and ABC transferases were observed. These enzymes may confer resistance to pesticides in the aphid populations. Overall, our results support the importance of host plants in structuring bacterial communities in aphids and show the functional roles of symbionts in aphid survival and development. Thus, these findings can be the basis for further detailed investigations and devising better strategies to manage the pests in field conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03142-1.

15.
PeerJ ; 9: e12655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003936

RESUMO

The first cave-dwelling Solenogastres-marine shell-less worm-like mollusks-were sampled from Mediterranean marine caves floor silt in the Marseille area. The mollusks were 1.5 mm in length, had a transparent body with shiny spicules and appear to represent a new Tegulaherpia species. Electron microscopy revealed a high number of microbial cells, located on the surface of the spicules as well as in the cuticle of Tegulaherpia sp. The observed microbial cells varied in morphology and were unequally distributed through the cuticle, reaching a highest density on the dorsal and lateral sides and being practically absent on the ventral side. Next Generation Sequencing (NGS) of V4 region of 16S rRNA gene amplicons, obtained from the DNA samples of whole bodies of Tegulaherpia sp. revealed three dominating microorganisms, two of which were bacteria of Bacteroidetes and Nitrospirae phyla, while the third one represented archaea of Thaumarchaeota phylum. The Operational Taxonomic Unit (OTU), affiliated with Bacteroidetes was an uncultured bacteria of the family Saprospiraceae (93-95% of Bacteroidetes and 25-44% of the total community, depending on sample), OTU, affiliated with Nitrospirae belonged to the genus Nitrospira (8-30% of the community), while the thaumarchaeal OTU was classified as Candidatus Nitrosopumilus (11-15% of the community). Members of these three microbial taxa are known to form associations with various marine animals such as sponges or snails where they contribute to nitrogen metabolism or the decomposition of biopolymers. A similar role is assumed to be played by the microorganisms associated with Tegulaherpia sp.

16.
Mar Drugs ; 8(4): 1417-68, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20479984

RESUMO

The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Poríferos/microbiologia , Animais , Bactérias/isolamento & purificação , Biodiversidade , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Desenho de Fármacos , Fungos/isolamento & purificação , Humanos , Poríferos/química , Técnicas de Cultura de Tecidos
17.
Front Microbiol ; 11: 1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793164

RESUMO

Bark beetles form symbiotic associations with multiple species of fungi that supplement their metabolic needs. However, the relative contributions of each symbiont to the nutrition of bark beetles have been largely unexplored. Thus, we evaluated the ability of three fungal symbionts of mountain pine beetle to concentrate nitrogen and produce ergosterol while infecting phloem of a novel host jack pine. Ergosterol was used as proxy to determine the fungal biomass (hyphal density) in the current study. We inoculated 80 trees in two forest stands with one of the three fungal species or a non-fungal (control) agar. Six weeks later, we collected phloem from the necrotic lesions induced by the fungi, uninfected tissues adjacent to lesions, and non-inoculated control trees. We found that nutritional contributions varied with fungal species. Nitrogen in lesions was higher in trees inoculated with Ophiostoma montium or control trees, relative to Grosmannia clavigera or Leptographium longiclavatum. Furthermore, concentrations of ergosterol were higher in O. montium lesions compared to other tissues or treatments. These results suggest that O. montium differs from G. clavigera and L. longiclavatum in terms of acquiring nitrogen from host tissues and producing ergosterol.

18.
Insect Sci ; 27(2): 256-265, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30047567

RESUMO

We tested the recent hypothesis that the "fly factor" phenomenon (food currently or previously fed on by flies attracts more flies than the same type of food kept inaccessible to flies) is mediated by bacterial symbionts deposited with feces or regurgitated by feeding flies. We allowed laboratory-reared black blow flies, Phormia regina (Meigen), to feed and defecate on bacterial Luria-Bertani medium solidified with agar, and isolated seven morphologically distinct bacterial colonies. We identified these using matrix-assisted laser desorption/ionization mass spectrometry and sequencing of the 16S rRNA gene. In two-choice laboratory experiments, traps baited with cultures of Proteus mirabilis Hauser, Morganella morganii subsp. sibonii Jensen, or Serratia marcescens Bizio, captured significantly more flies than corresponding control jars baited with tryptic soy agar only. A mixture of seven bacterial strains as a trap bait was more attractive to flies than a single bacterial isolate (M. m. sibonii). In a field experiment, traps baited with agar cultures of P. mirabilis and M. m. sibonii in combination captured significantly more flies than traps baited with either bacterial isolate alone or the agar control. As evident by gas chromatography-mass spectrometry, the odor profiles of bacterial isolates differ, which may explain the additive effect of bacteria to the attractiveness of bacterial trap baits. As "generalist bacteria," P. mirabilis and M. m. sibonii growing on animal protein (beef liver) or plant protein (tofu) are similarly effective in attracting flies. Bacteria-derived airborne semiochemicals appear to mediate foraging by flies and to inform their feeding and oviposition decisions.


Assuntos
Dípteros/microbiologia , Animais , Comportamento Apetitivo , Comportamento Alimentar , Feminino , Masculino , Odorantes/análise , Simbiose
19.
Mar Drugs ; 7(2): 113-29, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19597576

RESUMO

Marine animals and plants such as sponges, sea squirts, corals, worms and algae host diverse and abundant symbiotic microorganisms. Marine microbial symbionts are possible the true producers or take part in the biosynthesis of some bioactive marine natural products isolated from the marine organism hosts. Investigation of the pharmaceutical metabolites may reveal the biosynthesis mechanisms of related natural products and solve the current problem of supply limitation in marine drug development. This paper reviews the advances in diversity revelation, biological activity and related pharmaceutical metabolites, and functional genes of marine microbial symbionts from the China Sea.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Invertebrados/microbiologia , Animais , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/genética , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Fungos/genética , Fungos/metabolismo , Biologia Marinha , Oceanos e Mares , Preparações Farmacêuticas/isolamento & purificação , Simbiose
20.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589314

RESUMO

Efficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world's coral reef ecosystems.


Assuntos
Recifes de Corais , Poríferos/metabolismo , Poríferos/microbiologia , Animais , Carbono/metabolismo , Microbiota , Nitrogênio/metabolismo , Nutrientes/metabolismo , Fósforo/metabolismo , Enxofre/metabolismo , Simbiose , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA