Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chemistry ; 29(41): e202301252, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194695

RESUMO

Exploring efficient, affordable and stable electrocatalyst toward hydrogen evolution reaction (HER) is of great scientific significance for the practical implementation of the water splitting. The heteroatom doping represents a serviceable strategy to further elevate the catalytic performance for a transition metal-based electrocatalyst because of the electronic regulation effect. Herein, a reliable self-sacrificial template-engaged approach is proposed to synthesize O-doped CoP (denoted as O-CoP) microflowers, which simultaneously considers the regualtion of electronic configuration via anion doping and sufficient exposure of active sites via nanostructure engineering. The suitable O incorporation content in CoP matrix could tremendously modify the electronic configuration, accelerate the charge transfer, promote the exposure of active sites, strengthen the electrical conductivity, and adjust the adsorption state of H*. Consequently, the optimized O-CoP microflowers with optimal O concentration display a remarkable HER property with a small overpotential of 125 mV to afford a current density of 10 mA cm-2 , a low Tafel slope of 68 mV dec-1 and long-term durability for 32 h under alkaline electrolyte, manifesting a considerable potential application for hydrogen production at large scale. The integration of anion incorporation and architecture engineering in this work will bring in a depth insight for the design of low-cost and effective electrocatalysts in energy conversion and storage systems.

2.
Mikrochim Acta ; 190(10): 390, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700117

RESUMO

Zirconium copper oxide microflowers (Zr/CuO MF) based non-enzymatic sensor was developed for glucose detection in saliva, urine, and blood. An easy urea hydrolysis method was employed for the synthesis of the metal oxide and further calcined to improve the catalytic property. The flower-like morphology of the Zr/CuO was confirmed by SEM analysis and the presence of copper and zirconium was examined using energy dispersive X-ray analysis (EDAX). The Zr/CuO MF modified screen-printed electrodes exhibited excellent glucose sensing performance in 0.15 M NaOH medium and could quantify glucose in the range from 10 µM to 27 mM. A high sensitivity of 1.815 ± 0.003 mA mM-1 cm-2 was obtained for lower glucose concentration from 15 µM to 3 mM and 1.250 ± 0.006 mA mM-1 cm-2 for higher concentration glucose from 3 to 27 mM. The limit of detection of the fabricated sensor was found to be 0.8 µM. The sensor displayed high selectivity and stability towards glucose in different body fluids like saliva, urine, and blood serum at a working potential of 0.6 V (vs. Ag/AgCl). In saliva, urine, and serum samples, the sensor exhibited excellent recovery of 95-108, 92-108, and 93-101% in saliva, urine, and serum, respectively, with a relative standard deviation of less than 10%, demonstrating high accuracy and reliability of the sensor. The developed sensor is promising for developing an invasive and non-invasive point-of-care testing device for glucose detection.


Assuntos
Líquidos Corporais , Saliva , Soro , Cobre , Glucose , Zircônio , Reprodutibilidade dos Testes , Óxidos
3.
Small ; 18(6): e2104863, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873836

RESUMO

Water oxidation is the key process of electrocatalytic water splitting owing to its inherently slow kinetics. The ingenious design of microstructures for oxygen evolution reaction (OER) catalysts is an important way to accelerate the kinetics of the water splitting reaction. In this work, a facile electric-field assisted alkaline hydrolysis-oxidation strategy is proposed to prepare 3D layered micro-flowers in situ constructed from ultra-thin CoNiFe (oxy)hydroxide (CoNiFe-OH) hexagonal plates by using Co/Ni/Fe metal-organic frameworks (MOFs) as sacrificial templates and metal sources. The growth of the ballflowers can be accurately controlled by matching the hydrolysis rate of MOFs templates and the coprecipitation rate of metal ions. More importantly, continuous oxidation voltage can drive transformation of some hydroxides into oxyhydroxide with abundant oxygen vacancies. Benefiting from the open structure with multiple electroactive sites and optimized chemical composition, the layered CoNiFe-OH micro-flowers show appealing OER electrocatalytic performance with a low overpotential of 207 mV@10 mA cm-2 and robust durability over 60 h. This work provides a strategy to prepare non-noble hierarchical nanostructured electrocatalysts for electrochemical energy conversion.

4.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956800

RESUMO

Scientific research is being compelled to develop highly efficient and cost-effective energy-storing devices such as supercapacitors (SCs). The practical use of SC devices is hindered by their low energy density and poor rate capability due to the binding agents in fabricating electrodes. Herein, we proposed flower-like highly open-structured binder-free ZnCo2O4 micro-flowers composed of nanosheets supported in nickel foam (ZnCoO@NF) with improved rate capability up to 91.8% when current varied from 2 to 20 A·g-1. The ZnCoO@NF electrode exhibited a superior specific capacitance of 1132 F·g-1 at 2 A·g-1 and revealed 99% cycling stability after 7000 cycles at a high current density of 20 A·g-1. The improved performance of the ZnCoO@NF electrode is attributed to the highly stable structure of the micro/nano-multiscale architecture, which provides both the high conduction of electrons and fast ionic transportation paths simultaneously.

5.
Nanotechnology ; 32(26)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33684904

RESUMO

In the past decades, defect engineering has become an effective strategy to significantly improve the hydrogen evolution reaction (HER) efficiency of electrocatalysts. In this work, a facile chemical vapor deposition (CVD) method is firstly adopted to demonstrate defect engineering in high-efficiency HER electrocatalysts of vanadium diselenide nanostructures. For practical applications, the conductive substrate of carbon cloth (CC) is selected as the growth substrate. By using a four-time CVD method, uniform three-dimensional microflowers with defect-rich small nanosheets on the surface are prepared directly on the CC substrate, displaying a stable HER performance with a low Tafel slope value of 125 mV dec-1and low overpotential voltage of 295 mV at a current density of 10 mA cm-2in alkaline electrolyte. Based on the results of x-ray photoelectron spectra and density functional theory calculations, the impressive HER performance originates from the Se vacancy-related active sites of small nanosheets, while the microflower/nanosheet homoepitaxy structure facilitates the carrier flow between the active sites and conductive substrate. All the results present a new route to achieve defect engineering using the facile CVD technique, and pave a novel way to prepare high-activity layered electrocatalysts directly on a conductive substrate.

6.
Small ; 16(46): e2003777, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33107177

RESUMO

Rational design and preparation of efficient and durable bifunctional electrocatalyst is an eternal yet challenging goal for sustainable energy conversion processes, such as water splitting. Herein, 3D NiFe layered double hydroxide-polyoxometalate (LDH-POM; polyoxometalate, i.e., K8 [SiW11 O39 ]·13H2 O) with micro-flower morphology is in situ grown on Ni foam via a facile one-step hydrothermal method, which can be used as a high-efficient bifunctional catalyst for overall water splitting. The as-prepared catalyst achieves overall water splitting current density of 10 mA cm-2 at low overpotentials (oxygen evolution reaction (OER): ≈200 mV; hydrogen evolution reaction (HER): ≈156 mV) in 0.1 m KOH over a period of 20 h operation. Experimental investigation and density functional theory calculation indicate that, compared to pristine NiFe LDH, W6+ in NiFe LDH-POM can effectively minimize the adsorption energy barriers of *OH and therefore improve the kinetics of OER. This result may provide a promising strategy to synthesize 3D LDH micro-flowers by employing POM as a structure-direction agent for catalysis and energy applications.

7.
Chemistry ; 26(66): 15103-15108, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32632984

RESUMO

The development of Pt-based electrocatalysts with high Pt utilization efficiency toward the hydrogen evolution reaction (HER) is of great significance for the future sustainable hydrogen economy. For rational design of high-performance HER electrocatalyst, the simultaneous consideration of both thermodynamic and kinetic aspects remains greatly challenging. Herein, a simple template-derived strategy is demonstrated for the in situ growth of ultrafine Pt nanoparticles onto Co3 O4 nanosheet-assembled microflowers (abbreviated as Pt/Co3 O4 microflowers hereafter) by using the pre-fabricated PtCo-based Hofmann coordination polymer as reactive templates. The elaborate preparation of such intriguing hierarchical architecture with well-dispersed tiny Pt nanoparticles, abundant metal/oxide heterointerfaces and open configuration endows the formed Pt/Co3 O4 microflowers with high Pt utilization efficiency, rich active sites, lowered energy barrier for water dissociation and expedited reaction kinetics. Consequently, the Pt/Co3 O4 microflowers exhibit superior HER activity with a relatively low overpotential of 34 mV to deliver a current density of 10 mA cm-2 , small Tafel slope (34 mV dec-1 ) and outstanding electrochemical stability, representing an attractive electrocatalyst for practical water splitting. What's more, our concept of in situ construction of metal/oxide heterointerfaces may provide a new opportunity to design high-performance electrocatalysts for a variety of applications.

8.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545697

RESUMO

By controlling the hydrothermal time, porous In2O3 nanosheet-assembled micro-flowers were successfully synthesized by a one-step method. The crystal structure, microstructure, and internal structure of the prepared samples were represented by an x-ray structure diffractometry, scanning electron microscopy, and transmission electron microscopy, respectively. The characterization results showed that when the hydrothermal time was 8 h, the In2O3 nano materials presented a flower-like structure assembled by In2O3 porous nanosheets. After successfully preparing the In2O3 gas sensor, the gas sensing was fully studied. The results show that the In2O3 gas sensor had an excellent gas sensing response to ethanol, and the material prepared under 8 h hydrothermal conditions had the best gas sensing property. At the optimum working temperature of 270 °C, the highest response value could reach 66, with a response time of 12.4 s and recovery time of 10.4 s, respectively. In addition, the prepared In2O3 gas sensor had a wide detection range for ethanol concentration, and still had obvious response for 500 ppb ethanol. Furthermore, the gas sensing mechanism of In2O3 micro-flowers was also studied in detail.

9.
Int J Biol Macromol ; 276(Pt 1): 133749, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986976

RESUMO

The study explored the antimicrobial, antibiofilm, and hemostatic properties of chitosan microflowers (CMF) in sponge form. The main objective was to enhance the preparation of CMF by employing varying quantities of calcium chloride (CaCl2) and tripolyphosphate (TPP). CMF was then combined with gelatin (GE) in different proportions to produce three sponge samples: CMF0@GE, CMF1@GE, and CMF2@GE. The CMF had a morphology like that of a flower and produced surfaces with a porous sponge-like structure. The antibacterial activity, as determined by the zone of inhibition (ZOI), increased with greater doses of CMF. Among the tested samples, CMF2@GE had the greatest activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium. CMF2@GE successfully suppressed biofilm formation, decreased clotting time to an average of 212.67 s, and exhibited excellent biocompatibility by preserving over 90 % viability of human skin fibroblast cells at dosages below 100 µg/mL. The results indicated that gelatin sponges filled with CMF have considerable promise as flexible medical instruments for wound healing and infection control.

10.
Environ Technol ; : 1-9, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100572

RESUMO

In this study, a one-step solvothermal method was used to fabricate Fe3+ doped BiOCl microflowers with abundant oxygen vacancies (OVs) in the presence of glacial acetic acid. Various analytical techniques were employed to characterize the structural, morphological, and optical properties of the prepared samples. The presence of OVs was confirmed by low temperature electron paramagnetic resonance (EPR) analysis. The photocatalytic results show that Fe3+ doped BiOCl photocatalysts have higher activity than the bare BiOCl, and 10% Fe3+/BiOCl exhibits the highest photocatalytic performance, the photocatalytic efficiency of this sample is 2.3 and 1.1 times higher than that of the blank BiOCl toward photocatalytic degradation of perfluorooctanoic acid (PFOA) and rhodamine B (RhB), respectively. Furthermore, Fe3+ doped BiOCl demonstrates excellent reusability. Based on the experimental observations, an enhancement mechanism for the photocatalytic activity of Fe3+ doped BiOCl was reasonably elucidated.

11.
Adv Sci (Weinh) ; 10(14): e2206952, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36950743

RESUMO

The development of high-performance, low-cost and rapid-production bifunctional electrocatalysts towards overall water splitting still poses huge challenges. Herein, the authors utilize a facile hydrothermal method to synthesize a novel structure of Co-doped ammonium lanthanum molybdate on Ni foams (Co-ALMO@NF) as self-supported electrocatalysts. Owing to large active surfaces, lattice defect and conductive channel for rapid charge transport, Co-ALMO@NF exhibits good electrocatalytic performances which requires only 349/341 mV to achieve a high current density of 600 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Besides, a low cell voltage of 1.52 V is required to reach the current density of 10 mA cm-2 in alkaline medium along with an excellent long-term stability for two-electrode configurations. Density functional theory calculations are performed to reveal the reaction mechanism on Co-ALMO@NF, which shows that the Mo site is the most favorable ones for HER, while the introduction of Co is beneficial to reduce the adsorption intensity on the surface of Co-ALMO@NF, thus accelerating OER process. This work highlighted the importance of the structural design for self-supporting electrocatalysts.

12.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630873

RESUMO

Semiconductor oxide gas sensors have important applications in environmental protection, domestic health, and other fields. Research has shown that designing the morphology of sensitive materials can effectively improve the sensing characteristics of sensors. In this paper, by controlling the solvothermal reaction time, a unique hexagonal flower-like structure of In2O3 materials consisting of cuboid nanorods with a side length of 100-300 nm was prepared. The characterization results indicated that with the increase in reaction time, the materials exhibited significant morphological evolution. When the solvent heating time is 5 h, the flower-like structure is basically composed of hexagonal nanosheets with a thickness of several hundred nanometers and a side length of several micrometers. With the increase in reaction time, the apex angles of the nano sheets gradually become obtuse, and, finally, with the Ostwald ripening process, they become cuboid nanorods with side lengths of 100-300 nanometers, forming unique micro-flowers. Among them, the material prepared with a reaction time of 20 h has good sensing performance for NO2, exhibiting low operating temperature and detection limit, good selectivity, repeatability, and long-term stability, thus suggesting a good application prospect.

13.
J Colloid Interface Sci ; 627: 815-826, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35901561

RESUMO

Herein, the MnCo2O4.5 microflowers (MFs) assembled by two-dimensional (2D) porous nanosheets were prepared through an initial solvothermal reaction with a subsequent annealing process. In this architecture, many interconnected 2D thin nanosheets were self-assembled together to form a 3D hierarchical MF with plenty of open channels. Such structure endows these MnCo2O4.5 MFs with large specific surface area of 156.85 m2/g for energy storage and provides rich ion diffusion pathways for ion transportation, thus the as-prepared MFs can exhibit good overall electrochemical performance in both hybrid supercapacitor (HSC) and lithium-ion battery (LIB). For the utilization in supercapacitor, the MFs deliver a specific capacity of 287.02 C/g at 1 A/g as well as a rate capability with 73.3 % capacity retention at 8 A/g. The energy density of the HSC assembled by MFs and activated carbon can reach up to 30.33 W h kg-1 at 959.35 W kg-1. When applied as the anode for Li-ion battery, a specific capacity of 1340.8 mA h g-1 at 0.1 A/g and cycling performance with low capacity loss of 0.73 mAh/g per cycle after 200 cycles at 0.5 A/g can be achieved. This work uncovers a repeatable and facile synthetic strategy to prepare transition metal oxides with large specific surface area and good overall electrochemical property.

14.
Biosens Bioelectron ; 182: 113178, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773379

RESUMO

DNA-based amplifiers with high programmability and accurate molecular recognition ability have become a versatile platform for target amplification. However, the random diffusion of capture probes (CPs) in most DNA amplifiers limits the target recognition efficiency, affecting the limit of detection. Herein, a high-efficient DNA amplifier was developed by localizing the CPs consisted of the unique palindromic tails and target recognition sequences on Au nanoparticle modified magnetic beads (Au@MBs). In the presence of target K-ras gene, the CPs with high local concentration and orientation could capture the target efficiently to expose their palindromic tails, which could act as primers to trigger the polymerization for target recycling. More importantly, the polymerization products could involve in the next recycle and produce abundant mimic targets (MTs) continuously, thereby achieving the detection of trace K-ras gene. Meanwhile, a novel electrochemiluminescence (ECL) indicator of a thin-layer of perylene (Pe) molecules decorated Ag microflowers (Pe@Ag MFs) was obtained based on the reaction between the perylene cation radical (Pe•+) and Ag atoms. The obtained Pe@Ag MFs exhibited desirable ECL performance because (i) a thin-layer of Pe molecules could reduce the inner filter effect and inactive emitters, (ii) the Ag MFs as coreaction accelerator could react with S2O82- to produce more SO4•- and shorten the distance between Pe•- and SO4•- to significantly enhance the ECL intensity of Pe with less energy loss. This work paves the way for the development of efficient amplification strategy and offers a paradigm for the preparation of high-efficiency ECL indicators.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Perileno , DNA , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Medições Luminescentes , Prata
15.
Environ Sci Pollut Res Int ; 28(5): 5774-5785, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32975756

RESUMO

One of mankind's biggest concerns is water pollution. Textile industry emerged as one of the main contributors with dyes as the main pollutant. Presence of dyes in water is very dangerous due to their toxicity; thus, it is important to remove them from water. In these recent years, heterogeneous advance oxidation process surfaced as a possible dyes' removal technique. This process utilizes semiconductor as photocatalyst to degrade the dyes in presence of light and zinc oxide (ZnO) appears to be a promising photocatalyst for this process. In this study, pullulan, a biopolymer, was used to produce porous ZnO microflowers (ZnO-MFs) through green synthesis via precipitation method. The effects of pullulan's amount on the properties of ZnO-MFs were investigated. The ZnO-MF particle size decreased with the increased of pullulan amount. Interestingly, formation of pores occurred in presence of pullulan. The synthesized ZnO-MFs have the surface area ranging from 6.22 to 25.65 m2 g-1 and pore volume up to 0.1123 cm3 g-1. The ZnO-MF with the highest surface area was chosen for photocatalytic degradation of methyl orange (MO). The highest degradation occurred in 300 min with 150 mg catalyst dosage, 10 ppm initial dye concentration, and pH 7 experimental conditions. However, through comparison of photodegradation of MO with all synthesized ZnO-MFs, 25PZ exhibited the highest degradation rate. This shows that photocatalytic activity is not dependent on surface area alone. Based on these results, ZnO-MF has the potential to be applied in wastewater treatment. However, further improvement is needed to increase its photocatalytic activity.


Assuntos
Óxido de Zinco , Compostos Azo , Catálise , Glucanos , Porosidade
16.
Talanta ; 230: 122337, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934789

RESUMO

The regular design of atomic composition of materials endows a diverse range of enzyme mimics types and increases a broader application prospect. In this study, we designed a nickel-cobalt mixed metal sulfide and demonstrated that the as-prepared NiCo2S4 microflowers possessed intrinsic peroxidase-like activity. Nickel-cobalt sulfide (NiCo2S4) possessed high electron transfer capacity, which lead to good peroxidase-like activity. Compared with the reported enzyme-like materials, NiCo2S4 exhibited a smaller Km and a stronger affinity with substrate. A colorimetric assay was developed for the direct detection of hydrogen peroxide and indirect detection of glucose over a wide linear range (H2O2 was 20-200 µM, and glucose was 20-1000 µM) with a low detection limit (H2O2 was 5.19 µM, and glucose was 8.24 µM). Furthermore, a NiCo2S4 based platform was established to study the antioxidant behavior of three antioxidants. The antioxidant capacities of the antioxidants were found to rank in the order: tannic acid (TA) > ascorbic acid (AA)> gallic acid (GA). Moreover, the three antioxidants showed different inhibition mechanisms. This study indicated a new and important application field for NiCo2S4 and provides a basis for the rational design of enzyme-like mimics in future research.


Assuntos
Colorimetria , Peroxidase , Antioxidantes , Glucose , Peróxido de Hidrogênio , Peroxidases
17.
Materials (Basel) ; 14(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300700

RESUMO

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400-500 nm in diameter. The surface area is as large as 48.6 m2 g-1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.

18.
J Hazard Mater ; 403: 123987, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265026

RESUMO

Developing highly efficient and cost-effective catalyst with tuned microstructure holds great promise in the reduction of nitroaromatic compounds under mild reaction conditions. Herein, we report a new Co@NC-MF catalyst with a fascinating hierarchical flower-like architecture in situ assembled from uniform Co@NC nanoneedles, which can function as a favorable platform for the efficient reduction of nitroaromatic compounds in the presence of NaBH4. In addition with the structural advantage, the characterization and experimental results demonstrate the enormous advantage of interfacial synergistic catalysis in enhancing the catalytic performance. The outside electron-rich N-doped carbon layer as Lewis basic sites and the inside Co nanoparticles are responsible for the adsorption of 4-nitrophenol (4-NP) and generation of active hydrogen species, respectively. This work contributes to the construction of well-integrated composites with well-balanced interface synergy to boost the catalytic performance in various heterogeneous reactions.

19.
ACS Appl Mater Interfaces ; 13(17): 20336-20348, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900063

RESUMO

A novel chemiresistive-type sensor for detecting sub-ppm NO2 has been fabricated using AuPt bimetal-decorated SnSe2 microflowers, which was synthesized by the hydrothermal treatment followed by in situ chemical reduction of the bimetal precursors on the surface of the petals of the microflowers. The as-prepared sensor registers a superior performance in detection of sub-ppm concentration of NO2. Functionalized by the AuPt bimetal, the SnSe2 microflower-based sensor shows a response of approximately 4.62 to 8 ppm NO2 at 130 °C. It is significantly higher than those of the sensors using the pristine SnSe2 (∼2.29) and the modified SnSe2 samples by a single metal, either Au (∼3.03) or Pt (∼3.97). The sensor demonstrates excellent long-term stability, signal repeatability, and selectivity to some typical interfering gaseous species including ammonia, acetone, formaldehyde, ethanol, methanol, benzene, CO2, SO2, and CO. The remarkable improvement of the sensitive characteristics could be induced by the electronic and chemical sensitization and the synergistic effect of the AuPt bimetal. Density functional theory (DFT) is implemented to calculate the adsorption states of NO2 on the sensing materials and thus to possibly reveal the sensing mechanism. The significantly enhanced response of the SnSe2-based sensor decorated with AuPt bimetallic nanoparticles has been found to be possibly caused by the orbital hybridization of O, Au, and Pt atoms leading to the redistribution of electrons, which is beneficial for NO2 molecules to obtain more electrons from the composite material.

20.
J Biotechnol ; 317: 27-33, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32344002

RESUMO

In conventional preparation of enzyme embedded organic-inorganic hybrid flower-like nanostructures, usually it requires three days which is time-consuming and limits their widespread applications. In this context, alpha-amylase hybrid bio-microflowers were prepared by simple, efficient and rapid method in the presence of chitosan via inotropic gelation and biomineralization approach. The hybrid bio-microflowers was synthesized within 6 h with ∼140 % enhanced catalytic activity. The prepared hybrid bio-microflowers were characterized by FT-IR, SEM, and PXRD. The hybrid bio-microflowers exhibited higher rate of reaction (Vmax) and outstanding thermo-stability (in the temperature range 55-75 °C). Further, hybrid bio-microflowers showed magnificent reusability (upto eight cycles) and long-term storage stability (for about 30 days). In the end, in starch hydrolytic study, immobilized alpha-amylase exhibited higher hydrolytic potential towards corn, wheat and potato starch as compared to free form. This designed hybrid bio-microflowers can be employed as an engineered biocatalyst in industrial applications.


Assuntos
Enzimas Imobilizadas , Nanoestruturas/química , alfa-Amilases , Cálcio/química , Quitosana/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Reutilização de Equipamento , Hidrólise , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Amido/metabolismo , alfa-Amilases/química , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA