Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 477-494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38404640

RESUMO

Caries is one of the most prevalent human diseases, resulting from demineralization of tooth hard tissue caused by acids produced from bacteria, and can progress to pulpal inflammation. Filling restoration with dental resin composites (DRCs) is currently the most common treatment for caries. However, existing DRCs suffer from low fracture strength and lack comprehensive anti-caries bioactivity including remineralization, pulp protection, and anti-cariogenic bacteria effects. In this study, inspired by plant roots' ability to stabilize and improve soil, fluorinated urchin-like hydroxyapatite (FUHA) with a three-dimensional whisker structure and bioactive components of calcium, phosphorus, and fluorine was designed and synthesized by a dynamic self-assembly method. Furthermore, versatile FUHA particles with different loading fractions were used as functional fillers to fabricate methacrylate-based DRCs, where the urchin-like hydroxyapatite (UHA) filled DRCs and commercial DRCs (Z350XT and BEAUTIFIL II) served as the control groups. The results demonstrated that FUHA with 50 wt% loading in resin matrix endowed DRC (F5) with excellent physicochemical properties, dentin remineralization property, cell viability, promotion of dental pulp stem cells mineralization, and antibacterial properties. Meanwhile, F5 also presented good clinical handling and aesthetic characteristics. Therefore, structure/functional-integrated FUHA filled DRCs have potential as a promising strategy for tooth restoration and anti-caries bioactivity.

2.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759690

RESUMO

The filler/resin matrix interface interaction plays a vital role in the properties of dental resin composites (DRCs). Porous particles are promising fillers due to their potential in constructing micromechanical interlocking at filler/resin matrix interfaces, therefore improving the properties of the resulting DRCs, where the pore size is significantly important. However, how to control the pore size of porous particles via a simple synthesis method is still a challenge, and how their pore sizes affect the properties of resulting DRCs has not been studied. In this study, porous silica (DPS) with a dendritic structure and an adjustable pore size was synthesized by changing the amounts of catalyst in the initial microemulsion. These synthesized DPS particles were directly used as unimodal fillers and mixed with a resin matrix to formulate DRCs. The results showed that the DPS pore size affects the properties of DRCs, especially the mechanical property. Among various DPS particles with different pore sizes, DPS6 resulted in 19.5% and 31.4% improvement in flexural strength, and 24.4% and 30.7% enhancement in compression strength, respectively, compared to DPS1 and DPS9. These DPS particles could help to design novel dental restorative materials and have promising applications in biomedicine, catalysis, and adsorption.


Assuntos
Excipientes , Dióxido de Silício , Porosidade , Adsorção , Catálise , Resinas Sintéticas
3.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808668

RESUMO

Carbon fiber reinforced polymer (CFRP) blades are often exposed to wild and even harsh environments. The durability of the blade can be greatly improved by adhesively bonding a Ni erosion shield to the leading edge. In a traditional bonding process, the permeation of adhesive is poor at the interface, which gives an insufficient micromechanical interlocking. In this study, ultrasonic vibration was applied during the bonding process of sandblasted Ni plates and CFRP laminates. The values of shear strength were measured by tensile tests to verify the strengthening effect of applying ultrasonication. The cross-section of the bonded interface was characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and the surfaces with different treatments were explored by atomic force microscopy (AFM). The cross-sectional morphology and failure model of the samples were investigated. The strengthening mechanism was then studied by a molecular dynamics method. For the simulation of molecular dynamics, the CFRP/Ni bonding interface model was designed using the Materials Studio software package. The Perl scripts were used to simulate the ultrasonic vibration with different frequencies and amplitudes. The results showed that the ultrasonic process could improve the permeability and uniformity of the adhesive, enhancing the micromechanical interlocking effect.

4.
Dent Mater ; 37(6): 961-971, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33714621

RESUMO

OBJECTIVE: Porous materials, especially porous silica particles are of great interest in different areas, and have applied in dental composites as inorganic fillers, due to their potential in constructing micromechanical interlocking at the filler-resin matrix interfaces. However, the facile and precise synthesis of hierarchical porous silica with graded sizes is still a great challenge. METHODS: Here, we synthesized dendritic porous silica (DPS) with center-radial hierarchical pores and controllable size ranging from 75 to 1000nm by varying simultaneously the amounts of silica precursor and template in the microemulsion. A plausible nucleation-growth mechanism for the structural formation and the size tunability of the DPS particles was further put forward. These DPS particles were then formulated with Bis-GMA/TEGDMA resin. RESULTS: The particle size and morphology influenced the mechanical properties of dental composites. Particularly, DPS-500 particles (average size: 500nm) exhibited the superior reinforcing effect, giving large improvements of 32.0, 96.7, 51.9, and 225.6% for flexural strength (SF), flexural modulus (EY), compressive strength (SC), and work of fracture (WOF), respectively, over the DPS-75 filled composite. All DPS filler sized exhibited similar degree of conversions and curing depths. Furthermore, the DPS-500 filled composite presented better cytocompatibility than commercial Z250 XT. SIGNIFICANCE: The facile synthesis of DPS particles developed here and the understanding of the influence of the filler size and morphology on the composite properties provide a shortcut to design porous silica with precise size control and dental composites with superior performance. These DPS particles could also have promising applications in biomedicine, catalysis, adsorption, and cancer therapy.


Assuntos
Resinas Compostas , Dióxido de Silício , Teste de Materiais , Ácidos Polimetacrílicos , Porosidade , Silanos , Propriedades de Superfície
5.
Dent Mater ; 33(10): 1139-1148, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797746

RESUMO

OBJECTIVE: The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. METHODS: WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. RESULTS: Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. SIGNIFICANCE: The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties.


Assuntos
Resinas Compostas , Dióxido de Silício , Teste de Materiais , Microscopia Eletrônica de Varredura , Maleabilidade , Silanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA