Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microcirculation ; 31(4): e12852, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38619428

RESUMO

The microvasculature is integral to nearly every tissue in the body, providing not only perfusion to and from the tissue, but also homing sites for immune cells, cellular niches for tissue dynamics, and cooperative interactions with other tissue elements. As a microtissue itself, the microvasculature is a composite of multiple cell types exquisitely organized into structures (individual vessel segments and extensive vessel networks) capable of considerable dynamics and plasticity. Consequently, it has been challenging to include a functional microvasculature in assembled or fabricated tissues. Isolated fragments of intact microvessels, which retain the cellular composition and structures of native microvessels, are proving effective in a variety of vascularization applications including tissue in vitro disease modeling, vascular biology, mechanistic discovery, and tissue prevascularization in regenerative therapeutics and grafting. In this review, we will discuss the importance of recapitulating native tissue biology and the successful vascularization applications of isolated microvessels.


Assuntos
Microvasos , Neovascularização Fisiológica , Humanos , Microvasos/fisiologia , Animais
2.
Stem Cell Rev Rep ; 15(2): 218-240, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739276

RESUMO

Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 µm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 µm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.


Assuntos
Endotélio Vascular/citologia , Microvasos/citologia , Neovascularização Fisiológica , Regeneração , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Microcirculação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA