Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732845

RESUMO

Metallic nanoscale particles attract a growing interest in several fields, thanks to their unique bonding characteristics; applications are appearing in the literature in the fields of, for example, sensor coatings and biochemical compound detection. However, the controlled fabrication of such nanopowders is often cumbersome, especially because their characterization is normally slow, involving procedures such as electron microscopy. On the other hand, microwave sensors based on near-field effects on materials are being developed with high sensitivity and show promising characteristics. In this paper, the authors show how a microwave sensor based on a Square Spiral Resonator can be used to characterize paraffin dispersions of nanoparticles conveniently and cost-effectively.

2.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772470

RESUMO

Chipless radio-frequency identification (RFID) sensors are not yet widespread in practical applications because of their limited sensitivity and selectivity when compared to more mature sensing technologies. The search for a suitable material to perform the sensing function has often been focused on the most common materials used in electrochemical sensing approaches, but little work has been done to directly relate the performances of chipless or microwave sensors to the characteristics of the materials used to fabricate them. In this work we are simulating the impact of the substrate material on the performances of a chipless RFID sensor for humidity detection. The dielectric parameters of the substrate material turn out to be very important to maximize the sensor performances, in relation to the operative range of the sensor (based on the desired application) and to the effective dielectric properties of the sensitive material used, we verify the simulated results with measurements of real chipless humidity cells with Nafion 117 sensitive material. We show which types of substrate are preferable for low-humidity detection and which substrates' features are instead fundamental to operate in a wider humidity range.

3.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896454

RESUMO

A novel electrophoretic technique to improve metasurface sensing capabilities of charged particles in solution is presented. The proposed technique may improve the ability of metasurfaces to sense charged particles in solution in a manner not possible using the current standard of particle deposition (which allows particles to sediment randomly on a metasurface under evaporation) by inducing an external, nonuniform electric field through the metasurface apertures. Such a technique may be useful in various sensing applications, such as in biological, polymer, or environmental sciences, where low concentration particles in solution are of interest. The electrophoretic technique was simulated and experimentally tested using latex nanoparticles in solution. The results suggest that, using this technique, one may theoretically increase the particle density within the metasurface regions of greatest sensitivity by nearly 1900% in comparison to random sedimentation due to evaporation. Such an increase in particle density within the regions of greatest sensitivity may facilitate more precise material property measurements and enhance identification and detection capabilities of metasurfaces to particles in solution which constitute only a few hundred parts per million by mass. It was experimentally determined that the electrophoretic technique enhanced metasurface sensing capabilities of 333 parts per million by mass latex nanoparticle solutions by nearly 1700%.

4.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679638

RESUMO

A novel technique using a W-band metasurface for the purpose of transmissive fine powder layer sensing is presented. The proposed technique may allow for the detection, identification, and characterization of inhomogeneous ultrafine powder layers which are effectively hundreds of times thinner than the incident wavelengths used to sense them. Such a technique may be useful during personnel screening processes (i.e., at an airport) and in industrial manufacturing environments where early detection and quantization of harmful airborne particulates can be a matter of security or safety. The proposed sensing technique was experimentally and theoretically tested. The results suggest that, using this technique, one may identify, extract the effective complex dielectric properties, and measure the layer thicknesses of ultrafine powder layers present on a metasurface. Using this technique, it may be possible to identify and characterize diverse media in various physical, chemical, and biological metasurface sensing efforts at numerous bands of the electromagnetic spectrum.


Assuntos
Comércio , Meio Ambiente , Pós
5.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617074

RESUMO

This paper examines the effect of finger fat pad thickness on the accuracy performance of complementary split-ring resonator (CSRR)-based microwave sensors for non-invasive blood glucose level detection. For this purpose, a simplified four-layer Cole-Cole model along with a CSRR-based microwave sensor have been comprehensively analyzed and validated through experimentation. Computed scattering parameter (S-parameter) responses to different fat layer thicknesses are employed to verify the concordance of the studied model with the measurement results. In this respect, a figure of merit (FM) based on the normalized squared difference is introduced to assess the accuracy of the considered Cole-Cole model. We have demonstrated that the analyzed model agrees closely with the experimental validation. In fact, the maximum error difference for all five fingertips does not exceed 1.73 dB over the entire frequency range of interest, from 1 GHz to 4 GHz.


Assuntos
Glicemia , Micro-Ondas , Tecido Adiposo
6.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430731

RESUMO

With rising healthcare costs and the rapid increase in remote physiologic monitoring and care delivery, there is an increasing need for economical, accurate, and non-invasive continuous measures of blood analytes. Based on radio frequency identification (RFID), a novel electromagnetic technology (the Bio-RFID sensor) was developed to non-invasively penetrate inanimate surfaces, capture data from individual radio frequencies, and convert those data into physiologically meaningful information and insights. Here, we describe groundbreaking proof-of-principle studies using Bio-RFID to accurately measure various concentrations of analytes in deionized water. In particular, we tested the hypothesis that the Bio-RFID sensor is able to precisely and non-invasively measure and identify a variety of analytes in vitro. For this assessment, varying solutions of (1) water in isopropyl alcohol; (2) salt in water, and (3) commercial bleach in water were tested, using a randomized double-blind trial design, as proxies for biochemical solutions in general. The Bio-RFID technology was able to detect concentrations of 2000 parts per million (ppm), with evidence suggesting the ability to detect considerably smaller concentration differences.


Assuntos
2-Propanol , Custos de Cuidados de Saúde , Ácido Hipocloroso , Monitorização Fisiológica , Água
7.
Sensors (Basel) ; 22(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560118

RESUMO

The measurement of water cut in crude oil is an essential procedure in petroleum production and it is desirable to obtain these data through an automatic and real-time method. Microwave sensors can be used for the task, and they are safe, robust and can cover the whole water cut range. However, they are relatively susceptible to the water conductivity and temperature, and the algorithms for addressing these problems are still rare in the literature. In this paper, a microwave transmission sensor that can measure the water cut under varying salinity conditions is proposed, and the algorithm for solving the water cut and salinity simultaneously with the measured amplitude and phase is described in detail. Experiments under different water cut and salinity conditions are conducted, and the results are used to verify the model and algorithm. Finally, a simplified and fast method for uncertainty analysis is proposed and applied to the iteration algorithm under test conditions. It can be concluded that accuracy higher than 95% in the water cut measurements can be expected under the 0~100% water cut range, and an error of about 10% in the water conductivity is achievable under water-continuous flow conditions. The uncertainty analysis shows that the calculated water cut and salinity results are negatively correlated, and the water salinity uncertainty tends to be larger than the water cut uncertainty. When the water salinity is high, the water cut uncertainty tends to be high whereas the water salinity uncertainty tends to be low.

8.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433245

RESUMO

A novel, low-cost, sensitive microwave microfluidic glucose detecting biosensor incorporating molecularly imprinted polymer (MIP) is presented. The sensing device is based on a stub resonator to characterize water glucose solutions. The tip of one of the stubs is coated with MIP to increase the selectivity of the sensor and hence the sensitivity compared to the uncoated or to the coated with non-imprinted polymer (NIP) sensor. The sensor was fabricated on a FR4 substrate for low-cost purposes. In the presence of the MIP, the sensor loaded with a glucose solution ranging from 50 mg/dL to 400 mg/dL is observed to experience an absorption frequency shift of 73 MHz when the solutions flow in a microfluidic channel passing sensing area, while the lower limit of detection (LLD) of the sensor is discovered to be 2.4 ng/dL. The experimental results show a high sensitivity of 1.3 MHz/(mg/dL) in terms of absorption frequency.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Micro-Ondas , Limite de Detecção , Glucose
9.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271217

RESUMO

Wireless microwave sensors provide a practical alternative where traditional contact-based measurement techniques are not possible to implement or suffer from performance deterioration. Resonating elements are commonly used in these sensors as the sensing concept relies on the resonance properties of the employed structure. This work presents some simple guidelines for designing displacement sensors based on spiral resonator (SR) tags. The working principle of this sensor is based on the variation of the coupling strength between the SR tag and a probing microstrip loop with the distance between them. The performance of the sensor depends on the main design parameters, such as tag dimensions, filling factor, number of turns, and the size of probing loop. The guidelines provided herein can be used for the initial phase of the design process by helping to select a preliminary set of parameters according to the desired application requirements. The provided conclusions are supported using electromagnetic simulations and analytical expressions. Finally, a corrected equivalent circuit model that takes into account the phenomenon of the resonant frequency shift at small distances is provided. The findings are compared against experimental measurements to verify their validity.

10.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35590955

RESUMO

A label-free, sensitive, miniaturized sensing device was developed for detecting living cells in their flow stream. The outstanding performance of this biosensor in distinguishing living cells in cell suspension was achieved by integrating microstrip stub resonator above a microfluidic structure using the metallic nanowire-filled membrane technology. The cell suspension flows in a microfluidic channel placed between the tip of the stub resonator and its ground plane as the substrate to take advantage of the uniform and concentrated field distribution. We studied the changes in relative permittivity due to the presence of a single living cell in the phase of the transmitted signal (S21). An average variation of as much as 22.85 ± 1.65° at ~11.1 GHz is observed for the living cell sensing using this optimized device. This biosensor could detect rapid flowing cells in their biological medium in real-time and hence, can be used as an early diagnosis and monitoring tool for diseases.


Assuntos
Técnicas Biossensoriais , Nanofios , Microfluídica , Micro-Ondas , Tecnologia
11.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591002

RESUMO

This work proposes a novel coupling mechanism for a complementary split-ring resonator as a planar near-field microwave sensor for dielectric materials. The resonator is etched into the ground plane of a microstrip line. This mechanism is based on the inductive coupling synthesized by utilizing a via that connects the power plane of the microstrip line to the central island of the resonator. The proposed coupling makes the coupling capacitance between the transmission line and the resonator relatively small and insignificant compared to the capacitance of the resonator, making it more sensitive to changes in the dielectric constant of the materials under test. In addition, the coupling is no longer dependent solely on the capacitive coupling, which significantly reduces the coupling degradation caused by loading the resonator with dielectric materials, so the inductive coupling plays an important role in the proposed design. Therefore, the proposed coupling mechanism improves the sensitivity and enhances the coupling between the transmission line and the resonator. The sensor is evaluated for sensitivity, normalized resonance shift, and coupling factor using a full-wave numerical simulation. The sensitivity of the proposed sensor is 12% and 5.6% when detecting dielectric constants of 2 and 10, respectively. Compared to recent studies, the sensitivity improvement when detecting similar permittivity is 20% (1.32 times) and 9.8% (1.1 times). For verification, the proposed sensor is manufactured using PCB technology and is used to detect the presence of two dielectric laminates.

12.
IEEE Sens J ; 21(4): 5303-5311, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33746625

RESUMO

Non-invasive respiration sensors integrated into furniture can be invisible to the user and greatly enhance comfort and convenience to facilitate many applications. Current sensors often require user cooperation or fitting, which discourages frequent usage. We present a new respiration sensor integrated into a bed or a chair by modifying a radio-frequency (RF) coaxial cable structure with a designed notch. The lung motion is coupled to the electromagnetic leakage at the notch through near-field coherent sensing (NCS). The sensors, covered with fabrics and positioned under the abdomen and thorax, can capture the respiratory waveforms and derive the breath rate. The heart rate can also be evaluated in the same setup with proper filtering. The sensor design can tolerate large position variation to accommodate user uncertainties. Various voluntary exercises of normal, deep, fast, held and blocked breathing were measured under different postures of supine, recumbent and sitting by the carrier frequency range between 900MHz and 2.4GHz. The breath rate from 10 participants compare well with the synchronous commercial chest-belt sensors in all breathing routines.

13.
Sensors (Basel) ; 21(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34300520

RESUMO

Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit. This paper presents the design of a metamaterial lens and its use in far-field microwave imaging for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation and numerical studies of the metamaterial lens design are presented followed by experimental demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne receiver-based system is used in conjunction with the metamaterial lens to develop a far-field microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of the defect with a separation of 0.23λ was resolvable using the proposed system.

14.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300662

RESUMO

In this paper, a displacement sensor with an electrically extremely small size and high sensitivity is proposed based on an elaborately designed metamaterial element, i.e., coupled split-ring resonators (SRRs). The sensor consists of a feeding structure with a rectangular opening loop and a sensing structure with double-layer coupled SRRs. The movable double-layer structures can be used to measure the relative displacement. The size of microwave displacement sensors can be significantly reduced due to the compact feeding and sensing structures. By adjusting the position of the split gap within the resonator, the detection directions of the displacement sensing can be further expanded accordingly (along with the x- or y-axis) without increasing its physical size. Compared with previous works, the extremely compact size of 0.05λ0 × 0.05λ0 (λ0 denotes the free-space wavelength), a high sensitivity, and a high quality factor (Q-factor) can be achieved by the proposed sensor. From the perspective of the advantages above, the proposed sensor holds promise for being applied in many high-precision industrial measurement scenarios.

15.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924501

RESUMO

Optical and magnetic linear/rotary encoders are well-known systems traditionally used in industry for the accurate measurement of linear/angular displacements and velocities. Recently, a different approach for the implementation of linear/rotary encoders has been proposed. Such an approach uses electromagnetic signals, and the working principle of these electromagnetic encoders is very similar to the one of optical encoders, i.e., pulse counting. Specifically, a transmission line based structure fed by a harmonic signal tuned to a certain frequency, the stator, is perturbed by encoder motion. Such encoder consists in a linear or circular chain (or chains) of inclusions (metallic, dielectric, or apertures) on a dielectric substrate, rigid or flexible, and made of different materials, including plastics, organic materials, rubber, etc. The harmonic signal is amplitude modulated by the encoder chain, and the envelope function contains the information relative to the position and velocity. The paper mainly focuses on linear encoders based on metallic and dielectric inclusions. Moreover, it is shown that synchronous electromagnetic encoders, able to provide the quasi-absolute position (plus the velocity and direction of motion in some cases), can be implemented. Several prototype examples are reviewed in the paper, including encoders implemented by means of additive process, such as 3D printed and screen-printed encoders.

16.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672180

RESUMO

Planar phase-variation microwave sensors have attracted increasing interest in recent years since they combine the advantages of planar technology (including low cost, low profile, and sensor integration with the associated circuitry for post-processing and communication purposes, among others) and the possibility of operation at a single frequency (thereby reducing the costs of the associated electronics). This paper reviews and compares three different strategies for sensitivity improvement in such phase-variation sensors (devoted to material characterization). The considered approaches include line elongation (through meandering), dispersion engineering (by considering slow-wave artificial transmission lines), and reflective-mode sensors based on step-impedance open-ended lines. It is shown that unprecedented sensitivities compatible with small sensing regions are achievable with the latter approach.

17.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867115

RESUMO

In this paper, 3D-printed electromagnetic (or microwave) encoders with synchronous reading based on permittivity contrast, and devoted to the measurement of displacements and velocities, are reported for the first time. The considered encoders are based on two chains of linearly shaped apertures made on a 3D-printed high-permittivity dielectric material. One such aperture chain contains the identification (ID) code, whereas the other chain provides the clock signal. Synchronous reading is necessary in order to determine the absolute position if the velocity between the encoder and the sensitive part of the reader is not constant. Such absolute position can be determined as long as the whole encoder is encoded with the so-called de Bruijn sequence. For encoder reading, a splitter/combiner structure with each branch loaded with a series gap and a slot resonator (each one tuned to a different frequency) is considered. Such a structure is able to detect the presence of the apertures when the encoder is displaced, at short distance, over the slots. Thus, by injecting two harmonic signals, conveniently tuned, at the input port of the splitter/combiner structure, two amplitude modulated (AM) signals are generated by tag motion at the output port of the sensitive part of the reader. One of the AM envelope functions provides the absolute position, whereas the other one provides the clock signal and the velocity of the encoder. These synchronous 3D-printed all-dielectric encoders based on permittivity contrast are a good alternative to microwave encoders based on metallic inclusions in those applications where low cost as well as major robustness against mechanical wearing and aging effects are the main concerns.

18.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142909

RESUMO

In this paper, reflective-mode phase-variation sensors based on open-ended stepped-impedance transmission lines with optimized sensitivity for their use as defect detectors and dielectric constant sensors are reported. The sensitive part of the sensors consists of either a 90° high-impedance or a 180° low-impedance open-ended sensing line. To optimize the sensitivity, such a sensing line is cascaded to a 90° transmission line section with either low or high characteristic impedance, resulting in a stepped-impedance transmission line configuration. For validation purposes, two different sensors are designed and fabricated. One of the sensors is implemented by means of a 90° high impedance (85 Ω) open-ended sensing line cascaded to a 90° low impedance (15 Ω) transmission line section. The other sensor consists of a 180° 15-Ω open-ended sensing line cascaded to a 90° 85-Ω line. Sensitivity optimization for the measurement of dielectric constants in the vicinity of that corresponding to the Rogers RO4003C substrate (i.e., with dielectric constant 3.55) is carried out. The functionality as a defect detector is demonstrated by measuring the phase-variation in samples consisting of the uncoated Rogers RO4003C substrate (the reference sample) with arrays of holes of different densities.

19.
Sensors (Basel) ; 20(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075338

RESUMO

A differential microwave permittivity sensor and comparator is designed using a microstrip transmission line loaded with a magnetic-LC resonator. The microstrip transmission line is aligned with the electric wall of the resonator. The sensor shows a single transmission zero, when it is unloaded or loaded symmetrically on both halves. A second notch appears in the transmission response by asymmetrical dielectric loading on the two halves of the device. The frequency splitting is used to characterize the dielectric properties of the samples under test. The sensitivity of the sensor is enhanced by removing the mutual coupling between the two halves of the magnetic-LC resonator using a metallic wall. The sensors' operation principle is explained through a circuit model analysis. A prototype of the designed sensor is fabricated and measurements are used for validation of the sensing concept. The sensor can be used for determination of the dielectric properties in solid materials or detecting defects and impurities in solid materials through a comparative measurement with a reference sample.

20.
Sensors (Basel) ; 20(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549274

RESUMO

This paper highlights interest in the implementation of microwave sensors based on resonant elements, the subject of a special issue in the journal. A classification of these sensors on the basis of the operating principle is presented, and the advantages and limitations of the different sensor types are pointed out. Finally, the paper summarizes the different contributions to the special issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA